Nanoparticle albumin-bound mTHPC for photodynamic therapy: Preparation and comprehensive characterization of a promising drug delivery system.

Int J Pharm

Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany. Electronic address:

Published: May 2020

Nanoparticle albumin-bound (nab)-technology is an industrial applicable manufacturing method for the preparation of albumin-based drug carriers of poorly water-soluble drugs. In the present study the advantages of nanotechnology, albumin as an endogenous protein with the capability of high tumor enrichment and the selective light activation of the photosensitizer Temoporfin (mTHPC) were combined to a new delivery system for oncological use. The herewith provided well-established photodynamic therapy may enable a beneficial alternative for the treatment of solid tumors. In the present study a reproducible method for the preparation of stable mTHPC-albumin nanoparticles via nab-technology was established. The nanoparticles were physicochemically characterized with regard to particle size and size distribution and the impact of this preparation method on nanoparticle as well as mTHPC stability was investigated. Nanoparticles with improved colloidal stability over a broad pH range and in the presence of physiological NaCl concentrations were achieved in high yield. Due to high pressure homogenization a certain oxidative decay of mTHPC was observed. Cell culture experiments revealed an effective cellular uptake of mTHPC in a cholangiocarcinoma cell line (TFK-1). After light-activation high cytotoxicity was shown for photosensitizer loaded nanoparticles enabling the application of the proposed formulation in photodynamic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119347DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
nanoparticle albumin-bound
8
delivery system
8
method preparation
8
mthpc
5
albumin-bound mthpc
4
mthpc photodynamic
4
preparation
4
therapy preparation
4
preparation comprehensive
4

Similar Publications

Application of Light-Responsive Nanomaterials in Bone Tissue Engineering.

Pharmaceutics

January 2025

Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201300, China.

The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, and efficient properties. These materials can regulate cellular biological reactions and promote bone cell adhesion, proliferation, and differentiation by absorbing specific wavelengths of light and converting them into physical and chemical signals.

View Article and Find Full Text PDF

: The mechanism of polysaccharide-based nanocarriers in enhancing photodynamic immunotherapy in colorectal cancer (CRC) remains poorly understood. : The effects of TPA-3BCP-loaded cholesteryl hemisuccinate- polysaccharide nanoparticles (DOP@3BCP NPs) and their potential molecular mechanism of action in a tumor-bearing mouse model of CRC were investigated using non-targeted metabolomics and transcriptomics. Meanwhile, a histopathological analysis (H&E staining, Ki67 staining, and TUNEL assay) and a qRT-PCR analysis revealed the antitumor effects of DOP@3BCP NPs with and without light activation.

View Article and Find Full Text PDF

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

The effectiveness of ultraviolet-C light-emitting diodes (UVC LEDs) is currently limited by the lack of suitable encapsulation materials, restricting their use in sterilization, communication, and in vivo cancer tumor inhibition. This study evaluates various silicone oils for UVC LED encapsulation. A material aging experiment was conducted on CF1040 (octamethylcyclotetrasiloxane), HF2020 (methyl hydro polysiloxanes), and MF2020-1000 (polydimethylsiloxane) under UVC radiation for 1000 h.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) involves the topical application of a photosensitizer and its activation by visible light, leading to the generation of protoporphyrin IX (PpIX) and reactive oxygen species. Daylight photodynamic therapy (dPDT), a variant utilizing natural sunlight as the energy source, enhances procedural flexibility by eliminating the need for specialized equipment. dPDT has been effectively used in dermatology to treat various cutaneous disorders, including neoplastic and infectious diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!