Substrate multispecificity among 20β-hydroxysteroid dehydrogenase type 2 members.

Mol Cell Endocrinol

Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Molecular Endocrinology and Metabolism, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Published: June 2020

Steroids regulate many physiological processes. Hydroxysteroid dehydrogenases (HSDs) modulate the levels of steroids in pre- and post-receptor metabolism. The subfamily of 20β-HSD type 2 currently comprises six members from six different species. The zebrafish ortholog converts cortisone to 20β-dihydrocortisone and is involved in the catabolism of the stress hormone cortisol. Here, we elucidated the substrate preferences of all 20β-HSD type 2 enzymes towards a selected panel of steroids. For quantification of the substrates and their respective 20β-reduced products, we first developed and validated a liquid chromatography-mass spectrometry based method. Applying this method to activity assays with recombinantly expressed enzymes, our findings indicate that the 20β-HSD type 2 enzymes catalyze the 20β-reduction of a plethora of steroids of the glucocorticoid biosynthesis pathway. The observed multispecificity among the homologous 20β-HSD type 2 enzymes implies different physiological roles in different species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2020.110822DOI Listing

Publication Analysis

Top Keywords

20β-hsd type
16
type enzymes
12
type
5
substrate multispecificity
4
multispecificity 20β-hydroxysteroid
4
20β-hydroxysteroid dehydrogenase
4
dehydrogenase type
4
type members
4
steroids
4
members steroids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!