The study of molecular dynamics simulations is largely facilitated by analysis and visualization toolsets. However, these toolsets are often designed for specific use cases and those only, while scripting extensions to such toolsets is often exceedingly complicated. To overcome this problem, we designed a software application called AViS which focuses on the extensibility of analysis. By utilizing the dataflow programming (DFP) paradigm, algorithms can be defined by execution graphs, and arbitrary data can be transferred between nodes using visual connectors. Extension nodes can be implemented in either Python, C++, and Fortran, and combined in the same algorithm. AViS offers a comprehensive collection of nodes for sophisticated visualization state modifications, thus greatly simplifying the rules for writing extensions. Input files can also be read from the server automatically, and data is fetched automatically to improve memory usage. In addition, the visualization system of AViS uses physically-based rendering techniques, improving the 3D perception of molecular structures for interactive visualization. By performing two case studies on complex molecular systems, we show that the DFP workflow offers a much higher level of flexibility and extensibility when compared to legacy workflows. The software source code and binaries for Windows, MacOS, and Linux are freely available at https://avis-md.github.io/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173788PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231714PLOS

Publication Analysis

Top Keywords

dataflow programming
8
molecular dynamics
8
analysis visualization
8
software application
8
visualization
5
analysis
4
programming analysis
4
molecular
4
analysis molecular
4
avis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!