A salt-induced kinase is required for the metabolic regulation of sleep.

PLoS Biol

Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Published: April 2020

Many lines of evidence point to links between sleep regulation and energy homeostasis, but mechanisms underlying these connections are unknown. During Caenorhabditis elegans sleep, energetic stores are allocated to nonneural tasks with a resultant drop in the overall fat stores and energy charge. Mutants lacking KIN-29, the C. elegans homolog of a mammalian Salt-Inducible Kinase (SIK) that signals sleep pressure, have low ATP levels despite high-fat stores, indicating a defective response to cellular energy deficits. Liberating energy stores corrects adiposity and sleep defects of kin-29 mutants. kin-29 sleep and energy homeostasis roles map to a set of sensory neurons that act upstream of fat regulation as well as of central sleep-controlling neurons, suggesting hierarchical somatic/neural interactions regulating sleep and energy homeostasis. Genetic interaction between kin-29 and the histone deacetylase hda-4 coupled with subcellular localization studies indicate that KIN-29 acts in the nucleus to regulate sleep. We propose that KIN-29/SIK acts in nuclei of sensory neuroendocrine cells to transduce low cellular energy charge into the mobilization of energy stores, which in turn promotes sleep.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7173979PMC
http://dx.doi.org/10.1371/journal.pbio.3000220DOI Listing

Publication Analysis

Top Keywords

energy homeostasis
12
sleep
9
energy
8
energy charge
8
cellular energy
8
energy stores
8
sleep energy
8
stores
5
kin-29
5
salt-induced kinase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!