Copper-based nanomaterials have attracted tremendous interest due to their unique properties in the fields of photoluminescence and catalysis. As a result, studies on the correlation between their molecular structure and their properties are of great importance. Copper nanoclusters are a new class of nanomaterials that can provide an atomic-level view of the crystal structure of copper nanoparticles. Herein, a high-nuclearity copper nanocluster with 81 copper atoms, formulated as [Cu(PhS)(BuNH)(H)] (), was successfully synthesized and fully studied by X-ray crystallography, X-ray photoelectron spectroscopy, hydrogen evolution experiments, electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and density functional theory calculations. exhibits extraordinary structural characteristics, including (i) three types of novel epitaxial surface-protecting motifs; (ii) an unusual planar Cu core; (iii) a hemispherical shell, comprised of a curved surface layer and a planar surface layer; and (iv) two distinct, self-organized arrangements of protective ligands on the curved and planar surfaces. The present study sheds light on structurally unexplored copper nanomaterials and paves the way for the synthesis of high-nuclearity copper nanoclusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c00541 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China.
High-nuclearity polyoxometalate (POM) clusters are attractive building blocks (BBs) for the synthesis of metal-organic frameworks (MOFs) due to their high connectivity and inherently multiple metal centers as functional sites. This work demonstrates a strategy of step-wise growth on ring-shaped [PWO] precursor, which produced two new high-nuclearity polyoxotungstates, a half-closed [HPWO] {W} and a fully-closed [HPWO] {W}. By in situ synthesis, unique MOFs of copper triazole-benzoic acid (HL) complexes incorporating the negatively-charged {W} and {W} as nodes, {Cu(HL)W} HNPOMOF-1 and {Cu(HL)W} HNPOMOF-2, were constructed by delicately tuning the reaction conditions, mainly solution pH, which controls the formation of {W} and {W}, and at the same time the protonation of triazole-benzoic acid ligand thus its coordination mode to copper ion that creates the highest nuclearity POM-derived MOFs reported to date.
View Article and Find Full Text PDFACS Nano
December 2024
Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
J Am Chem Soc
October 2024
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China.
The pursuit of precision in the engineering of metal nanoparticle assemblies has long fascinated scientists, but achieving atomic-level accuracy continues to pose a significant challenge. This research sheds light on the hierarchical assembly processes of two high-nuclearity Cu(I) nanoclusters (NCs). By employing a multiligand cooperative stabilization strategy, we have isolated a series of thiacalix[4]arene (TC4A)/alkynyl coprotected Cu(I) NCs (, where = , , , ).
View Article and Find Full Text PDFNano Lett
September 2024
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
This work presents a new strategy to achieve the growth of copper sulfide nanoclusters with high nuclearity. Through a phosphine-assisted C-S reductive cleavage approach, an intrinsically chiral [Cu] cluster passes through a [S-Cu] cluster and transforms into a higher-nuclearity [S-Cu] cluster, which features a core-shell structure with a [Cu] core encapsulated by a chiral [CuS] shell. Interestingly, the spiral arrangement of the bidental ligands on the surface of the [S-Cu] cluster leads to the /-enantiomeric configurations.
View Article and Find Full Text PDFChem Sci
November 2023
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
A comparative study of structure-property relationships in isomeric and isostructural atomically precise clusters is an ideal approach to unravel their fundamental properties. Herein, seven high-nuclearity copper(i) alkynyl clusters utilizing template-assisted strategies were synthesized. Spherical Cu and Cu clusters are formed with a [M@(V/PO)] (M: Cu, Na, K) skeleton motif, while peanut-shaped Cu clusters feature four separate PO templates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!