Kynurenine pathway of tryptophan metabolism is involved in the pathophysiology of chronic kidney disease (CKD) and diabetes mellitus, mainly through the inflammation-induced activity of indoleamine 2,3-dioxygenase (IDO), and few studies have investigated its potential link with proteinuria. Renin-angiotensin system inhibitors (RASis) are recommended in these patients to decrease proteinuria, slow CKD progression and reduce cardiovascular risk, but whether these drugs influence kynurenine levels in humans is unknown. We evaluated serum tryptophan and kynurenine in patients suffering from CKD with or without type 2 diabetes mellitus, their correlations with markers of reduced kidney function, and their relationship with RAS-inhibiting therapy. Of 72 adult patients enrolled, 55 were receiving RASis, whereas 17 were not. Tryptophan was assessed by HPLC (high-performance liquid chromatography); kynurenine was measured using an enzyme-linked immunosorbent assay kit; IDO activity (%) was calculated with the formula (kynurenine/tryptophan) × 100. Kynurenine levels were significantly lower in the group under RASis compared to the untreated group (1.56 ± 0.79 vs 2.16 ± 1.51 µmol/l; P = 0.0378). In patients not receiving RASis, kynurenine was inversely related to estimated glomerular filtration rate (eGFR) (r = - 0.4862; P = 0.0478) and directly related to both proteinuria (ρ = 0.493; P = 0.0444) and albuminuria (ρ = 0.542; P = 0.0247). IDO activity was higher in patients with history of cardiovascular disease compared to patients with no such history, and it negatively correlated with eGFR (ρ = - 0.554; P = 0.0210) in the same group. These findings may contribute to explain the well-known beneficial effects of RAS inhibition in CKD population, especially considering that kynurenine is emerging as a potential new biomarker of CKD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11255-020-02469-zDOI Listing

Publication Analysis

Top Keywords

kynurenine levels
12
diabetes mellitus
12
ras inhibition
8
kynurenine
8
ckd population
8
type diabetes
8
receiving rasis
8
ido activity
8
patients history
8
ckd
6

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms.

View Article and Find Full Text PDF

: Several studies suggest gut microbiota metabolites as important immuno-modulators in inflammatory pain. We aimed to investigate the relationship between vitamin D status and gut dysbiosis markers in fibromyalgia (FM)-associated chronic inflammation. : Blood samples were collected from sixty-eight female FM patients (49.

View Article and Find Full Text PDF

Introduction: Indoleamine-2,3-dioxygenase (IDO) converts L-tryptophan (T) to L-kynurenine (K) resulting in an immunosuppressive microenvironment. Aim of the current study is to evaluate in patients with neuroendocrine tumor (NET): 1) T and K concentrations; 2) correlation with clinical outcome; 3) relationship between IDO activity and inflammatory cytokines.

Methods: A cross-sectional study was performed to investigate the IDO pathway in patients in follow-up for NET.

View Article and Find Full Text PDF

Introduction: Temporomandibular disorders have a multifactorial etiology including biological, biomechanical, neuromuscular, and biopsychosocial factors. Current research on temporomandibular disorders focuses on identifying clinically relevant biomarkers thus creating a new way of thinking about this dysfunction. The aim of the study was to determine the relationship between salivary/blood concentrations of oxidative/nitrosative stress biomarkers and biopsychosocial findings in patients with temporomandibular disorder-myofascial pain with referral.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!