High-throughput next-generation sequencing (NGS) is a feasible technique to detect considerably more markers and simultaneously obtain length and sequence information in a single reaction. In this study, we developed an NGS panel including 42 commonly used autosomal short tandem repeats (STRs) and amelogenin on the Illumina MiSeq FGx™. Sequencing accuracy was validated by the consistency of 2800M Control DNA detected using the ForenSeq™ DNA Signature Prep Kit and Sanger sequencing. Nomenclature incompatibility was found between NGS-STR and CE-STR typing at 9 loci (D3S3045, D6S477, D7S3048, D9S925, D14S608, D17S1290, D18S535, D21S1270, GATA198B05), despite the correct sequence. The difference was caused by the two different methods of identifying motif sequence and a one-to-one correspondence can be found. We evaluated the panel by investigating consistency, sequencing sensitivity and the effectiveness of the 2nd-degree relationship identification. Herein, we present sequencing results from 58 unrelated individuals of the Hebei Han population. The total discrimination power (TDP) and cumulative probability of exclusion for trio paternity testing (CPE) of the 42 NGS-STR panels reached 1-2.84 × 10 and 1-9.87 × 10, respectively. By family simulation and likelihood ratio (LR) calculation, this panel was shown to have effectiveness for the 2nd-degree kinship identification similar to the ForenSeq™ DNA Signature Prep Kit and certain advantages compared with it due to the relatively small number of loci. As expected, it provides new data for the development of NGS-STR typing technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-020-02295-z | DOI Listing |
Turk J Pediatr
December 2024
Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.
Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.
Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.
Ann Oncol
January 2025
Division of Pathology & Data Analytics, Leeds Institute of Medical Research, University of Leeds, UK.
Background: The FOxTROT trial has reported advantages of neoadjuvant chemotherapy (NAC) in locally advanced colon cancer (LACC). Here we present results of the embedded randomized phase II trial testing the addition of panitumumab to neoadjuvant FOLFOX compared with FOLFOX alone in RAS and BRAF-wild-type patients and with biomarker hyperselction.
Patients And Methods: Patients had operable, CT-predicted stage T3-4, N0-2, M0 colon adenocarcinoma.
Clin Cancer Res
January 2025
The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Background: KRAS inhibitors are revolutionizing the treatment of NSCLC, but clinico-genomic determinants of treatment efficacy warrant continued exploration.
Methods: Patients with advanced KRASG12C-mutant NSCLC treated with adagrasib (KRYSTAL-1-NCT03785249) were included in the analysis. Pre-treatment NGS data were collected per protocol.
Cureus
December 2024
Physical Medicine and Rehabilitation, Unidade Local de Saúde de Lisboa Ocidental, Lisbon, PRT.
Chondrodysplasia punctata (CP) is a rare skeletal dysplasia characterized by punctate calcifications in areas of endochondral ossification, with Conradi-Hünermann-Happle syndrome (CDPX2) being the most common form. This study presents a clinical case of a 10-month-old female child, diagnosed with CDPX2 following a referral from a neonatology department of a secondary hospital center to a genetics consultation at a tertiary hospital center in Portugal. Despite normal prenatal monitoring, postnatal evaluations revealed typical manifestations of the syndrome, including nasomaxillary hypoplasia, macrocephaly, and skeletal abnormalities confirmed through imaging.
View Article and Find Full Text PDFAtheroscler Plus
March 2025
Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Background And Aims: Familial hypercholesterolemia (FH) and other disorders with similar features are common genetic disorders that remain underdiagnosed and undertreated, due in part to the cost of screening. The aim of this study was to design and implement a whole gene targeted NGS panel for the molecular diagnosis of FH and statin intolerance with an emphasis on high quality variant calling, including copy number analysis.
Methods: A whole gene panel for hybridisation-based short read NGS was designed for the dominant FH-genes low density lipoprotein receptor (), apolipoprotein B (APOB), proproteinconvertas subtilisin/kexin type 9 (PCSK9), apolipoprotein E (APOE) and the recessive FH-genes low density lipoprotein receptor adaptor protein 1 (), ATP binding cassette subfamily member 5/8 (ABCG5/8) and lipase A, lysosomal acid type (), as well as solute carrier organic anion transporter family member 1B1 (), not an FH gene but linked to statin intolerance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!