Introduction: There is a tendency toward nonoperative management of appendicitis resulting in an increasing need for preoperative diagnosis and classification. For medical purposes, simple conceptual decision-making models that can learn are widely used. Decision trees are reliable and effective techniques which provide high classification accuracy. We tested if we could detect appendicitis and differentiate uncomplicated from complicated cases using machine learning algorithms.

Materials And Methods: We analyzed all cases admitted between 2010 and 2016 that fell into the following categories: healthy controls (Group 1); sham controls (Group 2); sham disease (Group 3), and acute abdomen (Group 4). The latter group was further divided into four groups: false laparotomy; uncomplicated appendicitis; complicated appendicitis without abscess, and complicated appendicitis with abscess. Patients with comorbidities and whose complete blood count and/or pathology results were lacking were excluded. Data were collected for demographics, preoperative blood analysis, and postoperative diagnosis. Various machine learning algorithms were applied to detect appendicitis patients.

Results: There were 7244 patients with a mean age of 6.84 ± 5.31 years, of whom 82.3% (5960/7244) were male. Most algorithms tested, especially linear methods, provided similar performance measures. We preferred the decision tree model due to its easier interpretability. With this algorithm, we detected appendicitis patients with 93.97% area under the curve (AUC), 94.69% accuracy, 93.55% sensitivity, and 96.55% specificity, and uncomplicated appendicitis with 79.47% AUC, 70.83% accuracy, 66.81% sensitivity, and 81.88% specificity.

Conclusions: Machine learning is a novel approach to prevent unnecessary operations and decrease the burden of appendicitis both for patients and health systems.

Levels Of Evidence: III.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00383-020-04655-7DOI Listing

Publication Analysis

Top Keywords

machine learning
16
appendicitis
10
preoperative diagnosis
8
detect appendicitis
8
controls group
8
group sham
8
uncomplicated appendicitis
8
complicated appendicitis
8
appendicitis abscess
8
appendicitis patients
8

Similar Publications

Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins.

View Article and Find Full Text PDF

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!