Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Obesity is a continuing national epidemic, and the condition can have a physical, psychological, as well as social impact on one's well-being. Consequently, it is critical to diagnose and document obesity accurately in the patient's electronic medical record (EMR), so that the information can be used and shared to improve clinical decision making and health communication and, in turn, the patient's prognosis. It is therefore worthwhile identifying the various factors that play a role in documenting obesity diagnosis and the methods to improve current documentation practices.
Method: We used a retrospective cross-sectional design to analyze outpatient EMRs of patients at an academic outpatient clinic. Obese patients were identified using the measured body mass index (BMI; ≥30 kg/m) entry in the EMR, recorded at each visit, and checked for documentation of obesity in the EMR problem list. Patients were categorized into two groups (diagnosed or undiagnosed) based on a documented diagnosis (or omission) of obesity in the EMR problem list and compared.
Results: A total of 10,208 unique patient records of obese patients were included for analysis, of which 4119 (40%) did not have any documentation of obesity in their problem list. Chi-square analysis between the diagnosed and undiagnosed groups revealed significant associations between documentation of obesity in the EMR and patient characteristics.
Conclusion: EMR designers and developers must consider employing automated decision support techniques to populate and update problem lists based on the existing recorded BMI in the EMR in order to prevent omissions occurring from manual entry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153175 | PMC |
http://dx.doi.org/10.1177/2055207620918715 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!