Anthropogenic mortality of wildlife is typically inferred from measures of the absolute decline in population numbers. However, increasing evidence suggests that indirect demographic effects including changes to the age, sex, and social structure of populations, as well as the behavior of survivors, can profoundly impact population health and viability. Specifically, anthropogenic mortality of wildlife (especially when unsustainable) and fragmentation of the spatial distribution of individuals (home-ranges) could disrupt natal dispersal mechanisms, with long-term consequences to genetic structure, by compromising outbreeding behavior and gene flow. We investigate this threat in African leopards (), a polygynous felid with male-biased natal dispersal. Using a combination of spatial (home-range) and genetic (21 polymorphic microsatellites) data from 142 adult leopards, we contrast the structure of two South African populations with markedly different histories of anthropogenically linked mortality. Home-range overlap, parentage assignment, and spatio-genetic autocorrelation together show that historical exploitation of leopards in a recovering protected area has disrupted and reduced subadult male dispersal, thereby facilitating opportunistic male natal philopatry, with sons establishing territories closer to their mothers and sisters. The resultant kin-clustering in males of this historically exploited population is comparable to that of females in a well-protected reserve and has ultimately led to localized inbreeding. Our findings demonstrate novel evidence directly linking unsustainable anthropogenic mortality to inbreeding through disrupted dispersal in a large, solitary felid and expose the genetic consequences underlying this behavioral change. We therefore emphasize the importance of managing and mitigating the effects of unsustainable exploitation on local populations and increasing habitat fragmentation between contiguous protected areas by promoting recovery and providing corridors of suitable habitat that maintain genetic connectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160178PMC
http://dx.doi.org/10.1002/ece3.6089DOI Listing

Publication Analysis

Top Keywords

anthropogenic mortality
16
natal dispersal
12
unsustainable anthropogenic
8
mortality wildlife
8
mortality
5
dispersal
5
unsustainable
4
mortality disrupts
4
natal
4
disrupts natal
4

Similar Publications

Human-Caused High Direct Mortality in Birds: Unsustainable Trends and Ameliorative Actions.

Animals (Basel)

December 2024

School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.

Human interaction with birds has never been more positive and supported by so many private citizens and professional groups. However, direct mortality of birds from anthropogenic causes has increased and has led to significant annual losses of birds. We know of the crucial impact of habitat loss on the survival of birds and its effects on biodiversity.

View Article and Find Full Text PDF

Introduction: In winter 2021/2022, a wolf population in the primeval Białowieża Forest in Poland was struck by an outbreak of severe mange caused by mixed infestations of and mites. We present an epidemiological analysis of this mange which caused significant morbidity and mortality.

Material And Methods: Ten sites known for wolf activity were monitored by camera trapping.

View Article and Find Full Text PDF

The importance of peripheral populations in the face of novel environmental change.

Proc Biol Sci

January 2025

Department of Forest and Wildlife Ecology, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA.

Anthropogenically driven environmental change has imposed substantial threats on biodiversity, including the emergence of infectious diseases that have resulted in declines of wildlife globally. In response to pathogen invasion, maintaining diversity within host populations across heterogenous environments is essential to facilitating species persistence. White-nose syndrome is an emerging fungal pathogen that has caused mass mortalities of hibernating bats across North America.

View Article and Find Full Text PDF

This study investigates groundwater uranium contamination and radiological risks in a part of Pambar River basin, South India, a region with significant geogenic radiation influenced by carbonatite rock formations. Uranium concentrations ranged from 5.8 to 240.

View Article and Find Full Text PDF

The association of temperature extremes, ecosystem resilience, with child mortality: Novel evidence from India.

Environ Res

December 2024

International Institute for Applied Systems Analysis (IIASA), Wittgenstein Centre for Demography and Global Human Capital (IIASA, OeAW, University of Vienna), Schloßplatz 1, 2361, Laxenburg, Austria. Electronic address:

The present study investigates how ecosystem resilience affects children's health and acts as a protective shield against high temperature exposure. Ecosystem resilience is the ability of an ecosystem to absorb anthropogenic or climatic shocks and recover from those shocks. The study used various data sources to estimate the impact of temperature extremes on child mortality in India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!