Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis.

Nat Struct Mol Biol

Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.

Published: May 2020

The ClpAP complex is a conserved bacterial protease that unfolds and degrades proteins targeted for destruction. The ClpA double-ring hexamer powers substrate unfolding and translocation into the ClpP proteolytic chamber. Here, we determined high-resolution structures of wild-type Escherichia coli ClpAP undergoing active substrate unfolding and proteolysis. A spiral of pore loop-substrate contacts spans both ClpA AAA+ domains. Protomers at the spiral seam undergo nucleotide-specific rearrangements, supporting substrate translocation. IGL loops extend flexibly to bind the planar, heptameric ClpP surface with the empty, symmetry-mismatched IGL pocket maintained at the seam. Three different structures identify a binding-pocket switch by the IGL loop of the lowest positioned protomer, involving release and re-engagement with the clockwise pocket. This switch is coupled to a ClpA rotation and a network of conformational changes across the seam, suggesting that ClpA can rotate around the ClpP apical surface during processive steps of translocation and proteolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7529148PMC
http://dx.doi.org/10.1038/s41594-020-0409-5DOI Listing

Publication Analysis

Top Keywords

unfolding proteolysis
8
substrate unfolding
8
conformational plasticity
4
plasticity clpap
4
clpap aaa+
4
aaa+ protease
4
protease couples
4
couples protein
4
protein unfolding
4
proteolysis clpap
4

Similar Publications

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ~55 kDa N- and C- domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.

View Article and Find Full Text PDF

Background: High-sodium intake has been proven to bring serious risks to public health. A potential sodium substitute of salt taste-enhancing hydrolysate (STEH) of protein has been focused on recently. The salt taste-enhancing activity (STEA) of STEH still needs to be improved.

View Article and Find Full Text PDF

MMP-2 inhibition attenuates ER stress-mediated cell death during myocardial ischemia-reperfusion injury by preserving IRE1α.

J Mol Cell Cardiol

January 2025

Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada. Electronic address:

Endoplasmic reticulum (ER) stress is one of the major events accompanying myocardial ischemia-reperfusion (IR) injury, as hypoxia and oxidative stress disrupt protein folding in the ER. As a result, the unfolded protein response (UPR) is activated through different sensors including inositol-requiring enzyme 1α (IRE1α) and protein kinase R-like ER kinase (PERK). Failure of the UPR to reduce ER stress induces cellular dysfunction.

View Article and Find Full Text PDF

AAA+ proteolytic machines unfold proteins before degrading them. Here, we present cryoEM structures of ClpXP-substrate complexes that reveal a postulated but heretofore unseen intermediate in substrate unfolding/degradation. A ClpX hexamer draws natively folded substrates tightly against its axial channel via interactions with a fused C-terminal degron tail and ClpX-RKH loops that flexibly conform to the globular substrate.

View Article and Find Full Text PDF

We have developed a method combining microinjection and automated fluorescence microscopy to continuously assess the degradation rate, subcellular localization and intracellular concentration of protein analytes at the single-cell level. Cells are unperturbed and grown in unaltered environmental conditions and show high viability. The injection of analytes at defined ratios and concentrations allows for a clearly defined starting point of degradation, without the entanglement of biosynthesis/uptake, often encountered in existing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!