Reinforcement-related cognitive processes, such as reward processing, inhibitory control and social-emotional regulation are critical components of externalising and internalising behaviours. It is unclear to what extent the deficit in each of these processes contributes to individual behavioural symptoms, how their neural substrates give rise to distinct behavioural outcomes and whether neural activation profiles across different reinforcement-related processes might differentiate individual behaviours. We created a statistical framework that enabled us to directly compare functional brain activation during reward anticipation, motor inhibition and viewing emotional faces in the European IMAGEN cohort of 2,000 14-year-old adolescents. We observe significant correlations and modulation of reward anticipation and motor inhibition networks in hyperactivity, impulsivity, inattentive behaviour and conduct symptoms, and we describe neural signatures across cognitive tasks that differentiate these behaviours. We thus characterise shared and distinct functional brain activation patterns underling different externalising symptoms and identify neural stratification markers, while accounting for clinically observed comorbidity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41562-020-0846-5 | DOI Listing |
Brain Struct Funct
December 2024
School of Medicine, Department of Neuropharmacology, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
This editorial celebrates the 80th birthday of Distinguished Professor Laszlo Zaborszky, co-founder of Brain Structure and Function, and reflects on his monumental contributions to neuroscience, particularly his pioneering work on the cholinergic basal forebrain. Professor Zaborszky's research has reshaped our understanding of this brain region's organization and function, uncovering its critical role in cognitive processes such as learning, memory, and attention. His findings have challenged longstanding assumptions, demonstrating that the cholinergic projections to the cortex are highly organized, with implications for neurodegenerative diseases like Alzheimer's.
View Article and Find Full Text PDFBehav Res Methods
December 2024
Department of Education Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.
The absence of explicit word boundaries is a distinctive characteristic of Chinese script, setting it apart from most alphabetic scripts, leading to word boundary disagreement among readers. Previous studies have examined how this feature may influence reading performance. However, further investigations are required to generate more ecologically valid and generalizable findings.
View Article and Find Full Text PDFTransl Stroke Res
December 2024
Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.
Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
December 2024
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) gene polymorphism (rs638405) has been widely reported to be associated with Alzheimer's disease (AD) risk. However, studies on the relationship between BACE1 gene polymorphism (rs638405), brain volume, and cognition in AD patients remain scarce. To investigate the effect of genetic polymorphism in BACE1 on gray matter volume (GMV) and cognition in AD, this study recruited 111 cognitively unimpaired (CU) controls and 144 AD patients.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!