The instability of neural recordings can render clinical brain-computer interfaces (BCIs) uncontrollable. Here, we show that the alignment of low-dimensional neural manifolds (low-dimensional spaces that describe specific correlation patterns between neurons) can be used to stabilize neural activity, thereby maintaining BCI performance in the presence of recording instabilities. We evaluated the stabilizer with non-human primates during online cursor control via intracortical BCIs in the presence of severe and abrupt recording instabilities. The stabilized BCIs recovered proficient control under different instability conditions and across multiple days. The stabilizer does not require knowledge of user intent and can outperform supervised recalibration. It stabilized BCIs even when neural activity contained little information about the direction of cursor movement. The stabilizer may be applicable to other neural interfaces and may improve the clinical viability of BCIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822646PMC
http://dx.doi.org/10.1038/s41551-020-0542-9DOI Listing

Publication Analysis

Top Keywords

neural activity
12
alignment low-dimensional
8
low-dimensional spaces
8
recording instabilities
8
stabilized bcis
8
neural
6
bcis
5
stabilization brain-computer
4
brain-computer interface
4
interface alignment
4

Similar Publications

In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.

View Article and Find Full Text PDF

The attention mechanism is essential to (CNN) vision backbones used for sensing and imaging systems. Conventional attention modules are designed heuristically, relying heavily on empirical tuning. To tackle the challenge of designing attention mechanisms, this paper proposes a novel probabilistic attention mechanism.

View Article and Find Full Text PDF

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.

View Article and Find Full Text PDF

Wearable accelerometers are widely used as an ecologically valid and scalable solution for long-term at-home sleep monitoring in both clinical research and care. In this study, we applied a deep learning domain adversarial convolutional neural network (DACNN) model to this task and demonstrated that this new model outperformed existing sleep algorithms in classifying sleep-wake and estimating sleep outcomes based on wrist-worn accelerometry. This model generalized well to another dataset based on different wearable devices and activity counts, achieving an accuracy of 80.

View Article and Find Full Text PDF

Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles.

Pharmaceutics

November 2024

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!