There is an urgent need to develop an automated malaria diagnostic system that can easily and rapidly detect malaria parasites and determine the proportion of malaria-infected erythrocytes in the clinical blood samples. In this study, we developed a quantitative, mobile, and fully automated malaria diagnostic system equipped with an on-disc SiO nanofiber filter and blue-ray devices. The filter removes the leukocytes and platelets from the blood samples, which interfere with the accurate detection of malaria by the blue-ray devices. We confirmed that the filter, which can be operated automatically by centrifugal force due to the rotation of the disc, achieved a high removal rate of leukocytes (99.7%) and platelets (90.2%) in just 30 s. The automated system exhibited a higher sensitivity (100%) and specificity (92.8%) for detecting Plasmodium falciparum from the blood of 274 asymptomatic individuals in Kenya when compared to the common rapid diagnosis test (sensitivity = 98.1% and specificity = 54.8%). This indicated that this system can be a potential alternative to conventional methods used at local health facilities, which lack basic infrastructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171072 | PMC |
http://dx.doi.org/10.1038/s41598-020-63615-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!