Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The proinflammatory cytokine IL-1β is a significant risk factor in cardiovascular disease that can be targeted to reduce major cardiovascular events. IL-1β expression and release are tightly controlled by changes in intracellular Ca ([Ca]), which has been associated with ATP release and purinergic signaling. Despite this, the mechanisms that regulate these changes have not been identified. The pannexin 1 (Panx1) channels have canonically been implicated in ATP release, especially during inflammation. We examined Panx1 in human umbilical vein endothelial cells following treatment with the proinflammatory cytokine TNF-α. Analysis by whole transcriptome sequencing and immunoblot identified a dramatic increase in Panx1 mRNA and protein expression that is regulated in an NF-κB-dependent manner. Furthermore, genetic inhibition of Panx1 reduced the expression and release of IL-1β. We initially hypothesized that increased Panx1-mediated ATP release acted in a paracrine fashion to control cytokine expression. However, our data demonstrate that IL-1β expression was not altered after direct ATP stimulation in human umbilical vein endothelial cells. Because Panx1 forms a large pore channel, we hypothesized it may permit Ca diffusion into the cell to regulate IL-1β. High-throughput flow cytometric analysis demonstrated that TNF-α treatments lead to elevated [Ca], corresponding with Panx1 membrane localization. Genetic or pharmacological inhibition of Panx1 reduced TNF-α-associated increases in [Ca], blocked phosphorylation of the NF-κB-p65 protein, and reduced IL-1β transcription. Taken together, the data in our study provide the first evidence, to our knowledge, that [Ca] regulation via the Panx1 channel induces a feed-forward effect on NF-κB to regulate IL-1β synthesis and release in endothelium during inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336877 | PMC |
http://dx.doi.org/10.4049/jimmunol.1901089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!