The aim of this study is to explore and identify ventilator-associated pneumonia (VAP)-related prognostic immune factors and further detect the drug-resistant pathogens to establish the theoretical guidance for clinical prevention and treatment strategies of VAP. A total of 478 patients using ventilator who were hospitalized in July 2014 to November 2016 in our hospital were enrolled in this study. About 103 patients with VAP (21.5%, 103/478) among 478 cases of patients using ventilator. Among the 103 patients with VAP, the distribution of pathogenic bacteria and drug resistance in patients with VAP were detected and analyzed. In the VAP group, 35 patients died and 43 patients had simultaneous sepsis. Compared with those of non-VAP group, the proportion of CD3 (P = .012), CD3CD4 (P = .024) and CD8CD28 ( P = .017) T cells in VAP group increased significantly, which indicated more severe immune response. Multivariate regression model analysis revealed that tracheotomy of mechanical ventilation (P = .013), mechanical ventilation time ≥7 days (P = .02) and aspiration and reflux (P = .011) were independent risk factors associated with VAP. According to the results of bacterial culture and drug sensitivity test, rational selection of antibiotics and monitoring of patients within intensive care unit can effectively control the incidence of VAP and improve the prognosis of patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440178 | PMC |
http://dx.doi.org/10.1097/MD.0000000000019716 | DOI Listing |
PLoS One
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Background: Ventilator-associated pneumonia (VAP) is a common nosocomial infection in ICU, significantly associated with poor outcomes. However, there is currently a lack of reliable and interpretable tools for assessing the risk of in-hospital mortality in VAP patients. This study aims to develop an interpretable machine learning (ML) prediction model to enhance the assessment of in-hospital mortality risk in VAP patients.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
School of Medicine, Universidad de Concepción, Concepción 4030000, Chile.
The Modified Functional Reach Test (mFRT) was developed to assess sitting balance in individuals with spinal cord injury (SCI). No studies have explored which mFRT reach directions correlate with the center of pressure (CoP) variables in patients with motor-complete SCI (mcSCI). Addressing this gap is important for improving the clinical usefulness of the mFRT.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Microbiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Maria Curie-Skłodowska 9 Str., 85-094 Bydgoszcz, Poland.
Bacterial infection of the lower respiratory tract frequently occurs in mechanically ventilated patients and may develop into life-threatening conditions. Yet, existing diagnostic methods have moderate sensitivity and specificity, which results in the overuse of broad-spectrum antibiotics administered prophylactically. This study aims to evaluate the suitability of volatile bacterial metabolites for the breath-based test, which is used for diagnosing Ventilator-Associated Pneumonia (VAP).
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital Bonn, Bonn, Germany.
Objectives: This study aimed to evaluate the diagnostic utility of [Ga]Ga-DOTA-Siglec-9 positron emission tomography-computed tomography (PET/CT) in assessing disease activity in a patient experiencing a relapse of giant cell arteritis (GCA).
Case Presentation: A 90-year-old male patient with GCA, diagnosed in 2018, was enrolled. Demographic data, disease history, and laboratory parameters, including soluble VAP-1 (sVAP-1) levels, were recorded.
Indian J Crit Care Med
December 2024
Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
Background: Development of ventilator-associated pneumonia (VAP) is attributed to the microaspiration of pooled secretions around the cuff of airway devices. Despite the emphasis on the use of endotracheal tubes (ET) with subglottic secretion (SS) drainage ports to prevent VAP, the quality of the evidence for this recommendation remains moderate. This prospective observational study analyzed microbiological concordance between SS and endotracheal aspirate (ETA) cultures to generate further evidence in this regard.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!