Quantifying the dependence of cyanobacterial growth to nutrient for the eutrophication management of temperate-subtropical shallow lakes.

Water Res

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.

Published: June 2020

The increasing global occurrence of cyanobacterial blooms, attributed primarily to human-induced nutrient enrichment, significantly degrades freshwater ecosystems and poses serious risks to human health. The current study examined environmental variables and cyanobacterial biovolume (B) of 28 shallow lakes in the eastern China plains during the spring and summer of 2018. We used a 95% quantile regression model to explore season-specific response of B to total nitrogen (TN), or total phosphorus (TP), and robust linear relationships were observed between log(B+0.001) and log(TN), or log(TP) in both spring and summer periods. Based on these regressions, regional-scale and season-specific TN and TP thresholds are proposed for these lakes to ensure the safety for recreational waters and drinking water source. However, actual B for a given concentration of TN (or TP) for many observations were considerably lower than the results of the 95% regression model predict, indicating that other factors significantly modulated nutrient limitation of B. Generalized additive model and quantile regression model were used together to explore potentially significant modulating factors, of which lake retention time, macrophytes cover and N: P ratio were identified as most important. Thus, it is necessary to develop type-specific nutrient thresholds with the consideration of these significant modulating factors. Furthermore, nutrient-B relationships of our studied lakes with lake retention time>100 days and no macrophyte were further explored and nutrient thresholds of this lake type were proposed. Nutrient thresholds proposed in this study may play an essential role in achieving a cost-effective eutrophication management for shallow lakes both in the eastern China plains and elsewhere with similar climatic background. On a broader scale, the approaches and findings of this study may provide valuable reference to formulate reasonable nutrient reduction targets for other ecoregions with different climatic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.115806DOI Listing

Publication Analysis

Top Keywords

shallow lakes
12
regression model
12
nutrient thresholds
12
eutrophication management
8
lakes eastern
8
eastern china
8
china plains
8
spring summer
8
quantile regression
8
model explore
8

Similar Publications

Cyanobacterial blooms, driven by nutrient loading and temperature, pose significant ecological and economic challenges. This study employs a combined data-driven and trait-based modelling approach to predict changes in cyanobacterial communities in a mono- and a polydominant shallow temperate lakes under varying temperature and nutrient scenarios. Results of the AQUATOX simulation model for two aquatic systems suggest that a 2 °C temperature increase, consistent with Intergovernmental Panel on Climate Change's predictions, may influence cyanobacteria species composition and dominance, with trends indicating a possible shift favouring Nostocales over Oscillatoriales and Chroococcales.

View Article and Find Full Text PDF

Understanding the low-temperature drying process of sludge with machine learning in a sewage-source heat pump drying system.

J Environ Manage

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China.

Heat pump drying technology based on sewage heat source is an eco-friendly sludge drying method. It can effectively reduce the pollution of natural water bodies by waste heat while reducing energy consumption. However, the drying characteristics of sludge in this case remain unclear.

View Article and Find Full Text PDF

Examining the impacts of natural and anthropogenic influences on aquatic macrophytes in shallow lakes is crucial for their effective restoration and management. However, there is a lack of direct evidence regarding past species composition or detailed and continuous evidence of recent changes in aquatic macrophyte communities. This study utilized plant macrofossil remains deposited in the sediment, combined with macrophyte surveys from 1983 to 2010, to reconstruct the historical changes in the macrophyte community over approximately 160 years in Lake Weishan, a sub-lake of Lake Nansi located in the lower Yellow River (Huanghe River) Basin, northern China.

View Article and Find Full Text PDF

Estuarine ecosystems have been threatened by increasing anthropogenic and natural pressures, yet the integral understanding of their stability characteristics of microbial communities at taxonomic, habitat, and spatial scales remains limited. In this study, the Mulan River estuary in southeastern China was selected to compare the stability characteristics of bacterial and protistan communities in water and sediments over three hydrological periods, and to explore their spatial variations along the estuarine continuum from river to ocean. The potential driving mechanisms of stability characteristics were also explored.

View Article and Find Full Text PDF

Elucidating molecular characteristics of organic compounds during ozone micro-bubbles treatment based on GC × GC-QTOF-MS and non-targeted analysis.

J Environ Manage

January 2025

College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China. Electronic address:

The ozone micro-bubbles (OCBs) technology is increasingly gaining traction as a promising alternative method for organic compounds removal in wastewater. Nevertheless, there is a scarcity of literature addressing the molecular-level transformation of organic compounds during OCBs treatment. In this work, the secondary effluent from a wastewater treatment plant was treated with ozone milli-bubbles (OLBs) and OCBs, and the fate of organic compounds at the molecular level was investigated using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!