Nepal is abutted between the populated Indo-Gangetic Plain (IGP) and Himalayan mountains. Currently, knowledge on the country-wide distribution and cancer risks of atmospheric organic toxicants in Nepal remains limited. In this study, the concentrations, sources, and distributions of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs), along with their cancer risks, were investigated in Nepal by using tree bark as a passive air sampler. After transferring by a bark/air partitioning model, the averaged concentrations of ∑PAHs, ∑DDTs, ∑HCHs, HCB, ∑Endo and ∑PCBs in the atmosphere of Nepal were 3.71 × 10 pg/m, 1.10 × 10 pg/m, 2.92 × 10 pg/m, 4.38 × 10 pg/m, 4.66 pg/m and 65.8 pg/m, respectively. Source diagnosis suggested that biomass burning is the major source for PAHs, while local application and long-range transport jointly contribute to the high levels of DDT and HCH in the air. The ILCR (incremental lifetime cancer risk) value was used to assess the risks of various chemicals. Adults have a higher risk than other age groups; the major exposure pathway for risk is by inhalation; and PAHs and HCHs are the dominant chemical classes that lead to risk. It was also found that, in certain hotspots in south Nepal, the carcinogenic risks caused by DDT and HCH were particularly high (>1 × 10). Given that illegal and disordered use of legacy POPs in south Nepal and the IGP region is common, our results highlight an urgent need for voluntary regulation of the ongoing use of pesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.109510DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
8
aromatic hydrocarbons
8
organochlorine pesticides
8
polychlorinated biphenyls
8
nepal tree
8
tree bark
8
bark passive
8
passive air
8
air sampler
8
cancer risks
8

Similar Publications

What if an experiment could combine the power of cycloaddition and cross-coupling with the formation of an aromatic molecule in a single collision? Crossed molecular beam experiments augmented with electronic structure and statistical calculations provided compelling evidence on a novel radical route involving 1,3-butadiynyl (HCCCC; X∑) radicals synthesizing (substituted) arylacetylenes in the gas phase upon reactions with 1,3-butadiene (CHCHCHCH; XA) and 2-methyl-1,3-butadiene (isoprene; CHC(CH)CHCH; XA'). This elegant mechanism merges two previously disconnected concepts of cross-coupling and cycloaddition-aromatization in a single collision event via the formation of two new C(sp)-C(sp) bonds and bending the 180° moiety of the linear 1,3-butadiynyl radical out of the ordinary by 60° to 120°. In addition to its importance to fundamental organic chemistry, this unconventional mechanism links two previously separated routes of gas-phase molecular mass growth processes of polyacetylenes and polycyclic aromatic hydrocarbons (PAHs), respectively, in low-temperature environments such as in cold molecular clouds like the Taurus Molecular Cloud (TMC-1) and in hydrocarbon-rich atmospheres of planets and their moons such as Titan, which revises the established understanding of low-temperature molecular mass growth processes in the Universe.

View Article and Find Full Text PDF

Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.

View Article and Find Full Text PDF

Understanding the Molecular Mechanisms of Pyrene in Governing the Critical Metabolic Circuits of .

Environ Sci Technol

January 2025

Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.

Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on , a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater.

View Article and Find Full Text PDF

Chalcogen-containing carbonyls, specifically thioxanthone (TX), hold great potential in organic light-emitting diodes (OLEDs). While the development of narrowband OLEDs with chalcogen-containing carbonyls remains challenging due to difficulties in achieving both high device efficiency and narrow emission spectra. Herein, via a strategic incorporation of the TX moiety, two orange-red narrowband emitters, 2TXBN and BNTXBN, are designed and synthesized for the first time.

View Article and Find Full Text PDF

Identification of driving factors for heavy metals and polycyclic aromatic hydrocarbons pollution in agricultural soils using interpretable machine learning.

Sci Total Environ

January 2025

Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China; Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone and Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangzhou 510045, China.

This study integrated data-driven interpretable machine learning (ML) with statistical methods, complemented by knowledge-driven discrimination diagrams, to identify the primary driving factors of heavy metal (HM) and polycyclic aromatic hydrocarbon (PAH) contamination in agricultural soils influenced by complex sources in a rapidly industrializing region of a megacity in southern China. First, the statistical characteristics of the concentrations of HMs and PAHs, and their correlations with the environmental covariates were explored. Three ML models and a statistical model comprising multiple environmental variable predictors were developed and assessed to predict the concentration of HMs in the agricultural soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!