A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A morphing-Based 3D point cloud reconstruction framework for medical image processing. | LitMetric

A morphing-Based 3D point cloud reconstruction framework for medical image processing.

Comput Methods Programs Biomed

the Department of Systems and Computer Engineering, Carleton University, Ottawa, ON Canada. Electronic address:

Published: September 2020

Background And Objective: In the virtual surgery simulation system, the reconstruction of a highly precise soft tissue 3D model is an effective method to improve the user's visual telepresence. However, the traditional point cloud generation method based on subdivision and filling is unsatisfactory due to its low accuracy and slow speed.

Methods: To address this problem, we present a novel 3D point cloud reconstructing model based on Morphing. The 3D surface model of soft tissue (live) is obtained from a series of 2D CT images using Mimics. The 3D voxel model of soft tissue is reconstructed through a sequential change of the 3D surface model by utilizing Morphing. A nonlinear interpolation method is used to fit the irregular shape of the model and improve simulation accuracy.

Results: The point cloud model builds from discrete points, avoiding the problems of instability and computational complexity, which are inherent in both the surface and volume models for soft tissue. Compared with the volumetric subdividing and voxel filling method, the simulation results show that the 3D cloud model reconstructed based on Morphing is more fast, accurate and consistent with the real soft tissue.

Conclusions: The simulating experiment of soft tissue deformation using 3D point cloud model which reconstructed using moprhing proved our method is effective and correct.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2020.105495DOI Listing

Publication Analysis

Top Keywords

point cloud
20
soft tissue
20
cloud model
12
model
9
based morphing
8
surface model
8
model soft
8
model reconstructed
8
cloud
6
soft
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!