Ground Reaction Forces (GRF) during gait are measured using expensive laboratory setups such as in-floor or treadmill force plates. Ambulatory measurement of GRF using wearables enables remote monitoring of gait and balance. Here, we propose using an Inertial Measurement Unit (IMU) mounted on the pelvis to estimate the GRF during gait in daily life. Calibration procedures and an Error State Extended Kalman filter (EEKF) were used to transform the accelerations at the center of mass (CoM) to the 3D GRF. The instantaneous 3D GRF was estimated for different overground walking patterns and compared with the 3D GRF measured using the reference ForceShoe™ system. Furthermore, we introduce a changing reference frame called the current step frame that followed the direction of each step made. The frame was defined using movement of the feet, and the estimated GRF were expressed in this new frame. This allowed direct comparison and validation with the reference. The mean and standard deviation of error between the estimated instantaneous 3D GRF and the reference, normalized against the range of the reference, was 12.1 ± 3.3% across all walking tasks, in the horizontal plane. The error margins show that a single pelvis IMU could be a minimal and ambulatory sensing alternative for estimating the instantaneous 3D components of GRF during overground gait.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2020.2984809 | DOI Listing |
Sensors (Basel)
January 2025
Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Mexico City 14389, Mexico.
Axillary crutches assist people with lower limb injuries but can lead to upper limb strain with extended use. Spring-loaded crutches offer a potential solution, yet they are rarely tested in clinical settings. This study developed spring-loaded crutches with an integrated force-measuring system to analyze gait dynamics.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
Soybean is an important and versatile crop worldwide. Enhancing soybean architecture offers a potential method to increase yield. Plant-specific transcription factors play a crucial, yet often unnoticed, role in regulating plant growth and development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
This study presents a novel rod-cable hybrid planar cable-driven parallel robot inspired by the biological synergy of bones and muscles. The design integrates rigid rods and flexible cables to enhance structural stability and precision in motion control. The rods emulate bones, providing foundational support, while the cables mimic muscles, driving motion through coordinated tension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!