This manuscript presents a protocol to handle, characterize, and image freshly excised human breast tumors using pulsed terahertz imaging and spectroscopy techniques. The protocol involves terahertz transmission mode at normal incidence and terahertz reflection mode at an oblique angle of 30°. The collected experimental data represent time domain pulses of the electric field. The terahertz electric field signal transmitted through a fixed point on the excised tissue is processed, through an analytical model, to extract the refractive index and absorption coefficient of the tissue. Utilizing a stepper motor scanner, the terahertz emitted pulse is reflected from each pixel on the tumor providing a planar image of different tissue regions. The image can be presented in time or frequency domain. Furthermore, the extracted data of the refractive index and absorption coefficient at each pixel are utilized to provide a tomographic terahertz image of the tumor. The protocol demonstrates clear differentiation between cancerous and healthy tissues. On the other hand, not adhering to the protocol can result in noisy or inaccurate images due to the presence of air bubbles and fluid remains on the tumor surface. The protocol provides a method for surgical margins assessment of breast tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179081 | PMC |
http://dx.doi.org/10.3791/61007 | DOI Listing |
Sensors (Basel)
January 2025
Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
Terahertz radiation patterns can be registered using various detectors; however, in most cases, the scanning resolution is limited. Thus, we propose an alternative method for the detailed scanning of terahertz light field distributions after passing simple and complex structures. Our method relies on using a dielectric waveguide to achieve better sampling resolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
Existing biomedical imaging modalities are often restricted by their substantial size, high costs, and potential risks associated with ionizing radiation exposure. Given these challenges, there is an urgent need for innovative imaging systems that not only excel in detection performance but are also compact, cost-effective, and ensure safety for biomedical applications. In response to these requirements, our research introduces an advanced terahertz (THz) microbolometer array imaging system (MAIS), specifically engineered for biomedical detection.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
With the continuous development of Terahertz technology and its high sensitivity to water, Terahertz technology has been widely applied in various research areas within the field of biomedicine, such as research onskin wounds and burns, demonstrating numerous advantages and potential. The aim of this study is to summarize and conclude the current research status of Terahertz radiation in skin wounds, burns, and melanoma. Additionally, it seeks toreveal the development status of Terahertz in skin wound models and analyze the short comings of Terahertz in detecting such models at the present stage.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore; Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore 639798, Singapore. Electronic address:
Bound states in the continuum (BICs) are notable in photonics for their infinite Q factors. Perturbed BICs, or quasi-BICs (QBICs), have finite but ultra-high Q factors, enabling external coupling. So far, most studies have focused on the momentum-space properties of BICs and QBICs, with few discussions on their properties in real space.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
ECE Department, University of Wisconsin at Madison, 1415 Engineering Dr, Rm 3442, Madison, WI 53706, USA, Madison, Wisconsin, 53706, UNITED STATES.
Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!