Similar Publications

Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.

View Article and Find Full Text PDF

New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.

View Article and Find Full Text PDF

Photoswitchable Branched Polyurethanes Based on Hexaarylbiimidazole for Photolithography.

Macromol Rapid Commun

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

Hexaarylbiimidazole (HABI) molecules have awakened a broad interest in photo-processing, super-resolution imaging, photoinduced self-healing materials, and photomechanical hydrogels due to their excellent photosensitivity and photo-induced cleavage properties. In this work, a novel photoswitchable branched polyurethanes (BPU), which are synthesized by copolymerizing HABI with glycerol, isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), is designed. 7-Diethylamino-4-methylcoumarin (DMCO) is introduced as a radical quencher, which can not only avoid the hydroxyl interfering from conventional radical scavengers during the polymerization process but also promote efficient quenching of TPIR radicals.

View Article and Find Full Text PDF

Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis.

View Article and Find Full Text PDF

PdRu bimetallic nanoalloys with improved photothermal effect for amplified ROS-mediated tumor therapy.

Front Bioeng Biotechnol

January 2025

Department of Experimental Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China.

An emerging strategy in cancer therapy involves inducing reactive oxygen species (ROS), specifically within tumors using nanozymes. However, existing nanozymes suffer from limitations such as low reactivity, poor biocompatibility, and limited targeting capabilities, hindering their therapeutic efficacy. In response, the PdRu@PEI bimetallic nanoalloys were constructed with well-catalytic activities and effective separation of charges, which can catalyze hydrogen peroxide (HO) to toxic hydroxyl radical (·OH) under near-infrared laser stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!