Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by a heterogeneous distribution of pathological changes in the brain. Cortical thickness is one of the most sensitive imaging biomarkers for AD representing structural atrophy. The purpose of this study is to identify novel genes associated with cortical thickness. We measured the whole-brain mean cortical thickness from magnetic resonance imaging (MRI) scans in 919 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort, including 163 AD patients, 488 mild cognitive impairment patients, and 268 cognitively normal participants. Based on the single-nucleotide polymorphism (SNP)-based genome-wide association study, we performed gene-based association analysis for mean cortical thickness. Furthermore, we performed expression quantitative trait loci, protein-protein interaction network, and pathway analysis to identify biologically functional information. We identified four genes (B4GALNT1, RAB44, LOC101927583, and SLC26A10), two pathways (cyclin-dependent protein kinase holoenzyme complex and nuclear cyclin-dependent protein kinase holoenzyme complex), and one protein-protein interaction (B4GALNT1 and GALNT8 pair). These genes are involved in protein degradation, GTPase activity, neuronal loss, and apoptosis. The identified pathways are involved in the cellular processes and neuronal differentiation, which contribute to neuronal loss that is responsible for AD. Furthermore, the most significant SNP (rs12320537) in B4GALNT1 is associated with expression levels of B4GALNT1 in several brain regions. Thus, the identified genes and pathways provide deeper mechanistic insight into the molecular basis of brain atrophy in AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-191175DOI Listing

Publication Analysis

Top Keywords

cortical thickness
20
alzheimer's disease
12
novel genes
8
genes associated
8
associated cortical
8
protein-protein interaction
8
identified genes
8
cyclin-dependent protein
8
protein kinase
8
kinase holoenzyme
8

Similar Publications

Previous research has shown that smoking tobacco is associated with changes or differences in brain volume and cortical thickness, resulting in a smaller brain volume and decreased cortical thickness in smokers compared with non-smokers. However, the effects of smokeless tobacco on brain volume and cortical thickness remain unclear. This study aimed to investigate whether the use of shammah, a nicotine-containing smokeless tobacco popular in Middle Eastern countries, is associated with differences in brain volume and thickness compared with non-users and to assess the influence of shammah quantity and type on these effects.

View Article and Find Full Text PDF

: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.

View Article and Find Full Text PDF

. Leber hereditary optic neuropathy (LHON) is a condition characterized by bilateral acute or subacute vision loss in seemingly healthy individuals. Depending on the disease stage and initial presentation, it is often diagnosed as optic neuritis.

View Article and Find Full Text PDF

Background: Sleep plays a crucial role in cognitive performance and cognitive changes in aging. In the current study, we investigated the role of sleep duration genetics in cognitive changes over time and the moderating effect of age.

Methods: Participants were drawn from the Reference Abilities Neural Network and the Cognitive Reserve studies of Columbia University.

View Article and Find Full Text PDF

Multi-Scale Characterisation and Mechanical Adhesion in PVD-Deposited Ca-SZ Coating for Implantable Medical Devices.

Biomedicines

December 2024

Jean Lamour Institute, Department of Micro and Nanomechanics for Life, University of Lorraine, UMR 7198, 54011 Nancy, France.

Oral implantology faces a multitude of technical challenges in light of current clinical experience, underlining the need for innovation in implantable medical devices in both mechanical and biological terms. This study explores the influence of the thickness factor of calcium-doped zirconia (Ca-SZ) coatings deposited by PVD on their intrinsic mechanical properties and the determinism of the latter on adhesion to the TA6V alloy substrate after mechanical loading for applications in dental implantology. Three separate thicknesses of 250 nm, 450 nm and 850 nm were evaluated in terms of mechanical strength, modulus of elasticity and adhesion to the substrate, in accordance with ISO 20502:2005.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!