In this study, the feasibility of producing electrolytic iron from red muds in a strongly alkaline medium at 110 °C was studied. The red mud samples from a French industry were characterized by various techniques (ICP-AES, SEM, XRD) to determine their chemical and mineralogical compositions. The main phase in the red mud investigated was hematite (α-FeO). Iron electrodeposition tests from red mud suspended in a 12.5 mol/L NaOH electrolyte were conducted at constant current in a stirred electrochemical cell. The solid:liquid ratio and amounts of impurities contained in red mud were varied to optimize the faradaic yield and the production rate of electrolytic iron. Whereas hematite can be reduced to iron with a current efficiency over 80% for a current density (cd) up to 1000 A/m, the current efficiency with red muds was highest for a cd below 50 A/m and then decreased regularly to 20% at 1000 A/m. In all cases, the deposit produced contained more than 97% metal iron. The moderate performance of the process investigated with red mud was attributed to a troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110547DOI Listing

Publication Analysis

Top Keywords

red mud
28
electrolytic iron
12
red
9
iron red
8
red muds
8
current efficiency
8
1000 a/m
8
mud
7
iron
6
production electrolytic
4

Similar Publications

In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM.

View Article and Find Full Text PDF

The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe salts and organic compounds in the stage of high-pressure leaching, requires the purchase of relatively expensive reagents in large quantities. The aim of this study was to investigate the possibility of the use of electrolytically reduced bauxite residue (BR) as a substitute for these reagents. Reduced BR was obtained from Al-goethite containing BR using a bulk cathode in alkaline suspension.

View Article and Find Full Text PDF

The large stockpile and low utilization rate of red mud (RM) have caused an urgent need for large quantities of RM to be eliminated. In this study, multi-solid-waste synergistic RM-based composite cementitious materials (MS-RMCM) were prepared using RM as the primary material, combined with fly ash, silica fume, and quicklime. Orthogonal tests were conducted to investigate the effects of cementitious components on the mechanical properties.

View Article and Find Full Text PDF

In the context of evaluating the environmental impact of deep-sea tailing practices, we conducted a case study on the Bayer effluent released into the Mediterranean Sea by the French Gardanne alumina plant. This effluent results from the filtration of red mud, which has previously been discharged into the Cassidaigne canyon for 55 years. In 2015, regulatory changes permitted the released of a filtered effluent instead of the slurry.

View Article and Find Full Text PDF

Effect of cerium-zirconium oxide-loaded red mud on the selective catalytic reduction of NO in downhole diesel vehicle exhaust.

Environ Pollut

January 2025

College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China; State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.

Red mud (RM), an iron oxide-rich solid waste, shows potential as a catalyst for selective catalytic reduction in denitrification processes. This study investigates the catalytic performance and mechanism of metal-modified RM in reducing NO from diesel vehicle exhaust. Acid-washed RM catalysts were impregnated with varying ratios of cerium (Ce) and zirconium (Zr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!