Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution.

Appl Radiat Isot

Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, PR China. Electronic address:

Published: August 2020

A well-defined magnetic metal organic frameworks (MOFs)/graphene oxide (FeO@HKUST-1/GO) consisting of magnetic FeO nanoparticles, HKUST-1 nanocrystal and GO was synthesized through a simple and environmentally friendly approach. Characterizations of FeO@HKUST-1/GO adsorbing U(VI) with high-resolution transmission electron microscopy suggested that the FeO@HKUST-1/GO possessed good stability. The introduction of GO enhanced the ability of particles to uptake U(VI) from aqueous solution. The effects of solution pH, contact time and temperature on U(VI) adsorption were systematically tested by intermittent experiments. The adsorption process can be better described by the Langmuir model and the pseudo-second-order kinetic model. The results showed that the FeO@HKUST-1/GO exhibited good adsorption capacity towards U(VI) at the initial solution pH value of 4.0 and T = 318 K. The X-ray photoelectron spectroscopy was used to analyze the U(VI) removal mechanism. This work represents the application of FeO@HKUST-1/GO as a novel adsorbent to extract U(VI) from contaminated water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2020.109160DOI Listing

Publication Analysis

Top Keywords

magnetic metal
8
metal organic
8
uvi aqueous
8
aqueous solution
8
uvi
7
feo@hkust-1/go
5
organic frameworks/graphene
4
frameworks/graphene oxide
4
oxide adsorbent
4
adsorbent removal
4

Similar Publications

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.

View Article and Find Full Text PDF

The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).

View Article and Find Full Text PDF

Efficient removal of direct dyes and heavy metal ion by sodium alginate-based hydrogel microspheres: Equilibrium isotherms, kinetics and regeneration performance study.

Int J Biol Macromol

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:

Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.

View Article and Find Full Text PDF

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!