An erbium:YAG laser was used to generate 200-microseconds pulses of mid-infrared 2.94-microns light in both the single and multimode configurations. Laser pulses were focused on the surfaces of both rabbit long bones and methacrylate blocks, and the tissue response was examined histologically. The depth of thermal injury was determined by ocular micrometry. Over all energy levels tested, the erbium:YAG laser produced ablation of bone and methacrylate with minimal thermal damage to adjacent tissue. Increasing the laser energy per pulse produced increasingly wider and deeper grooves in both bone and methacrylate. However, such increase in laser energy produced a proportionately greater increase in the zone of thermal injury in methacrylate as compared with bone. These studies suggest the feasibility of a surgical erbium:YAG laser in orthopaedics and other forms of ablative surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.1900080508DOI Listing

Publication Analysis

Top Keywords

erbiumyag laser
16
bone methacrylate
12
ablation bone
8
thermal injury
8
laser energy
8
laser
7
methacrylate
5
methacrylate prototype
4
prototype mid-infrared
4
erbiumyag
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!