AI Article Synopsis

  • The DevR-DevS/DosR-DosS system in Mycobacterium tuberculosis helps the bacteria adapt to low oxygen conditions by regulating dormancy gene expression.
  • Under normal oxygen levels, DevS inhibits the activation of DevR, but under hypoxic conditions, it activates DevR, allowing dormancy genes to be expressed.
  • Mutations in specific residues of DevS (Gly-406 and Leu-407) have shown that these residues are critical for its phosphatase function, enabling the development of mutant strains that could accelerate the search for new drugs against tuberculosis without needing low oxygen conditions.

Article Abstract

The DevR-DevS/DosR-DosS two-component system of Mycobacterium tuberculosis, that comprises of DevS sensor kinase and DevR response regulator, is essential for bacterial adaptation to hypoxia by inducing dormancy regulon expression. The dominant phosphatase activity of DevS under aerobic conditions enables tight negative control, whereas its kinase function activates DevR under hypoxia to induce the dormancy regulon. A net balance in these opposing kinase and phosphatase activities of DevS calibrates the response output of DevR. To gain mechanistic insights into the kinase-phosphatase balance of DevS, we generated alanine substitution mutants of five residues located in DHp α1 helix of DevS, namely Phe-403, Gly-406, Leu-407, Gly-411 and His-415. For the first time, we have identified kinase positive phosphatase negative (K+P-) mutants in DevS by a single-site mutation in either Gly-406 or Leu-407. M. tuberculosis Gly-406A and Leu-407A mutant strains constitutively expressed the DevR regulon under aerobic conditions despite the presence of negative signal, oxygen. These mutant proteins exhibited ∼2-fold interaction defect with DevR. We conclude that Gly-406 and Leu-407 residues are individually essential for the phosphatase function of DevS. Our study provides new insights into the negative control mechanism of DevS by demonstrating the importance of an optimal interaction between DevR and DevS, and local changes associated with individual residues, Gly-406 and Leu-407, which mimic ligand-free DevS. These K+P- mutant strains are expected to facilitate the rapid aerobic screening of DevR antagonists in M. tuberculosis, thereby eliminating the requirement for hypoxic culture conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20200113DOI Listing

Publication Analysis

Top Keywords

gly-406 leu-407
16
devs
10
devs sensor
8
sensor kinase
8
mycobacterium tuberculosis
8
dormancy regulon
8
aerobic conditions
8
negative control
8
mutant strains
8
devr
7

Similar Publications

Article Synopsis
  • The DevR-DevS/DosR-DosS system in Mycobacterium tuberculosis helps the bacteria adapt to low oxygen conditions by regulating dormancy gene expression.
  • Under normal oxygen levels, DevS inhibits the activation of DevR, but under hypoxic conditions, it activates DevR, allowing dormancy genes to be expressed.
  • Mutations in specific residues of DevS (Gly-406 and Leu-407) have shown that these residues are critical for its phosphatase function, enabling the development of mutant strains that could accelerate the search for new drugs against tuberculosis without needing low oxygen conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!