ac Bubble Electrospinning Technology for Preparation of Nanofibrous Mats.

ACS Omega

Department of Nowovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic.

Published: April 2020

This study deals with a new combination of alternating current (ac) electrospinning and bubble electrospinning. Research devoted to the combination of these two methods for the preparation of nanofibrous and microfibrous mats has been carried out. The design, construction, and description of bubble electrospinning are described in this article. The final morphologies of the fibrous layers produced by these methods have been compared with other well-known electrospinning methods. The bubble electrospinning and ac electrospinning aspire to become new technologies that could be utilized in various technical areas and tissue-engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161057PMC
http://dx.doi.org/10.1021/acsomega.0c00575DOI Listing

Publication Analysis

Top Keywords

bubble electrospinning
16
preparation nanofibrous
8
electrospinning
6
bubble
4
electrospinning technology
4
technology preparation
4
nanofibrous mats
4
mats study
4
study deals
4
deals combination
4

Similar Publications

Swift Droplet Manipulation on BTO/Polyimide Slippery Surfaces.

Langmuir

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Droplet manipulation on functional surfaces is an urgent problem to be solved. Fast and precise droplet manipulation plays an important role in many applications, such as microreactors and microfluidics. Although numerous techniques have been developed to manipulate droplets by injecting external stimuli, it remains a challenge to achieve high-precision, high-sensitivity, and fast droplet manipulation on smart, slippery response surfaces.

View Article and Find Full Text PDF

Generalized and Scalable Synthesis of Manganese Dioxide-Based Tubular Micromotors for Heavy Metal Ion Removal.

ACS Nano

October 2024

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Synthetic nano- and micromachines hold immense promise in biomedicine and environmental science. Currently, bubble-driven tubular micro/nanomotors have garnered increasing attention owing to their exceptional high-speed self-propulsions. However, complex and low-yield preparation methods have hindered their widespread applications.

View Article and Find Full Text PDF

To meet the needs of developing efficient extractive materials alongside the evolution of miniaturized sorbent-based sample preparation techniques, a mesoporous structure of g-CN doped with sulfur as a heteroatom was achieved utilizing a bubble template approach while avoiding the severe conditions of other methods. In an effort to increase the number of adsorption sites, the resultant exfoliated structure was then modified with thymol-coumarin NADES as a natural sorbent modifier, followed by introduction into a nylon 6 polymer via an electrospinning process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis validated S-doped g-CN and composite production.

View Article and Find Full Text PDF

The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds' properties. Physical-chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.

View Article and Find Full Text PDF

Conventional electrospinning produces nanofibers with smooth surfaces that limit biomineralization ability. To overcome this disadvantage, we fabricated a tetramethylpyrazine (TMP)-loaded matrix-mimicking biomineralization in PCL/Gelatin composite electrospun membranes with bubble-shaped nanofibrous structures. PCL/Gelatin membranes (PG), PCL/Gelatin membranes containing biomineralized hydroxyapatite (HA) (PGH), and PCL/Gelatin membranes containing biomineralized HA and loaded TMP (PGHT) were tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!