The Zinc Finger E-box binding homeobox (ZEB1/TCF8 or DeltaEF1) is at the forefront of transcription factors involved in controlling epithelial-to-mesenchymal transitions (EMT). Essentially, EMT allows for the reorganization of epithelial cells to become migratory cells with a mesenchymal phenotype. In addition to ZEB1 being involved in embryonic development, ZEB1 has also been linked to processes involving micro-RNAs, long non-coding RNAs and stem cells. In recent years there has been an accumulation of evidence with regard to ZEB1 in various cancers. Although increased ZEB1 expression has largely been associated with EMT, cancer invasion, and tumorigenicity, there have been some episodic reports that have gone against the traditional reporting of the role of ZEB1. Indicating that the function of ZEB1 and the mechanisms by which ZEB1 facilitates its activities is more complex than was once appreciated. This complexity is further exacerbated by the notion that ZEB1 can act not only as a transcriptional repressor but a transcriptional activator as well. This review seeks to shed light on the complexity of ZEB1 with respect to cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086076 | PMC |
http://dx.doi.org/10.15190/d.2018.7 | DOI Listing |
Cell Rep
January 2025
The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA. Electronic address:
The sub-ventricular zone (SVZ) is the most well-characterized neurogenic area in the mammalian brain. We previously showed that in 65% of patients with glioblastoma (GBM), the SVZ is a reservoir of cancer stem-like cells that contribute to treatment resistance and the emergence of recurrence. Here, we build a single-nucleus RNA-sequencing-based microenvironment landscape of the tumor mass and the SVZ of 15 patients and two histologically normal SVZ samples as controls.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.
J Exp Clin Cancer Res
December 2024
Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France.
Background: Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University/Wuxi Medical Center, Nanjing Medical University/Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in cancer progression. We found lncRNA DNM1P35 is elevated in ovarian tumors compared to normal tissues, and demonstrated that lncRNA DNM1P35 promoted cancer cell proliferation, migration and invasion in SK-OV-3 and OVCAR-3 cell lines. Furthermore, lncRNA DNM1P35 also facilitated the epithelial-mesenchymal transition (EMT) of ovarian cancer cells.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Pajoohesh Blvd., P.O. Box 14965-161, Tehran, Iran.
METTL3, an m6A methyltransferase, is integral to the regulation of messenger RNA (mRNA) biogenesis, degradation, and translation through the N6-methyladenosine (m6A) modification. Alterations in m6A homeostasis have been implicated in the development, progression, invasion, and metastasis of certain cancers. The present research aims to examine the consequences of METTL3 knockdown using short hairpin RNA (shRNA) on the proliferation and invasive capabilities of human colorectal and melanoma cancer cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!