Quantal Basis of Secretory Granule Biogenesis and Inventory Maintenance: the Surreptitious Nano-machine Behind It.

Discoveries (Craiova)

Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 6997801, Israel.

Published: September 2014

Proteins are molecular machines with the capacity to perform diverse physical work as response to signals from the environment. Proteins may be found as monomers or polymers, two states that represent an important subset of protein interactions and generate considerable functional diversity, leading to regulatory mechanisms closely akin to decision-making in service systems. Polymerization is not unique to proteins. Other cell compartments (e.g. secretory granules) or tissue states (e.g. miniature end plate potential) are associated with polymerization of some sort, leading to information transport. This data-processing mechanism has similarities with (and led us to the investigation of) granule homotypic polymerization kinetics. Using information theory, we demonstrate the role played by the heterogeneity induced by polymerization: granule size distribution and the stealthy machine behind granule life cycle increase system entropy, which modulates the source/receiver potential that affects communication between the cell and its environment. The granule inventory management by the same nano-machine is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160546PMC
http://dx.doi.org/10.15190/d.2014.13DOI Listing

Publication Analysis

Top Keywords

granule
5
quantal basis
4
basis secretory
4
secretory granule
4
granule biogenesis
4
biogenesis inventory
4
inventory maintenance
4
maintenance surreptitious
4
surreptitious nano-machine
4
nano-machine proteins
4

Similar Publications

Human cancer cells xenografts to assess the efficacy of granulysin-based therapeutics.

Methods Cell Biol

January 2025

Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain. Electronic address:

9-kDa Granulysin is a protein present in the granules of human activated cytotoxic T lymphocytes and natural killer cells. It has been shown to exert cytolytic activity against a wide variety of microbes: bacteria, fungi, yeast and protozoa. Recombinant isolated granulysin is also capable of inducing tumor cell death, so it could be used as an anti-tumor therapy.

View Article and Find Full Text PDF

In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.

View Article and Find Full Text PDF

This study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds.

View Article and Find Full Text PDF

Background: The burden of hospital-acquired infections (HAIs) equates to 3.5 million cases, resulting in more than 90 000 deaths and 2.5 million disability-adjusted life years (DALYs) across Europe.

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!