Intracerebral hemorrhage (ICH) has been becoming a serious public health problem. Pneumonia, occurring in 43% of all ICH patients, is a common complication heavily influencing outcome and accounting for more than 1/3 of the overall mortality in patients with ICH. Ambroxol may be an effective additional treatment for ICH patients with pneumonia. But its effect and potential mechanism on functional recovery post-ICH still remain elusive. In the present study, the results indicated that 35 mg/kg and 70 mg/kg ambroxol facilitated neuronal survival and reduced white matter fiber bundle damage due to mitigating microglial activation and reducing proinflammatory cytokine accumulation in mice with ICH. The possible mechanism might be due to suppressing endoplasmic reticulum stress involving the IRE1/TRAF2 signaling pathway, which paves a new path for the treatment of ICH and opens a new window for the use of ambroxol in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142346PMC
http://dx.doi.org/10.1155/2020/8131286DOI Listing

Publication Analysis

Top Keywords

neuronal survival
8
white matter
8
suppressing endoplasmic
8
endoplasmic reticulum
8
reticulum stress
8
intracerebral hemorrhage
8
ich patients
8
treatment ich
8
ich
6
ambroxol
4

Similar Publications

From Cell to Organ: Exploring the Toxicological Correlation of Organophosphorus Compounds in Living System.

Toxicology

January 2025

Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India, 110062. Electronic address:

Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different level in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level on surviving species model.

View Article and Find Full Text PDF

The role of mitochondrial remodeling in neurodegenerative diseases.

Neurochem Int

January 2025

Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China. Electronic address:

Neurodegenerative diseases are a group of diseases that pose a serious threat to human health, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, it has been found that mitochondrial remodeling plays an important role in the onset and progression of neurodegenerative diseases. Mitochondrial remodeling refers to the dynamic regulatory process of mitochondrial morphology, number and function, which can affect neuronal cell function and survival by regulating mechanisms such as mitochondrial fusion, division, clearance and biosynthesis.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI.

View Article and Find Full Text PDF

The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC) of 0.

View Article and Find Full Text PDF

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!