Background: Clinical studies have showed that dexamethasone exposure during pregnancy could cause fetal growth retardation, but the mechanism by which prenatal dexamethasone exposure influences placental nutrient transport is still unclear. This study investigated the impacts of prenatal dexamethasone on the placental oxygen and nutrient transport.
Methods: Pregnant Wistar rats were subcutaneously administered with dexamethasone from day 9 to day 20 of gestation at 0.2 or 0.8 mg/kg·d. Pregnant rats were sacrificed on gestational day 20. The placental tissue was collected for analysis.
Results: Prenatal dexamethasone exposure (PDE) declined the fetal weight and increased the intrauterine growth retardation (IUGR) rate in a dose-dependent manner. The total placental volume and the length, density and surface area of fetal capillaries in the labyrinth zone reduced in a dose-dependent manner. In addition, the thickness of syncytial membrane dose-dependently increased, resulting in a dose-dependent decrease in oxygen diffusion capacity. Furthermore, after PDE, the nutrient transport area and oxygen diffusion capacity of male placenta were lower than that of female placenta. The mRNA and protein expression of placental nutrient transporters including glucose transporter 1 (GLUT1), glucose transporter 3 (GLUT3), L-type amino acid transporter 1 (LAT1), lipoprotein lipase (LPL) and scavenger receptor class B type 1 (SRB1) increased in female placenta. However, in male placenta, the expression of LAT1, LPL and SRB1 was significantly decreased and GLUT1 and GLUT3 have a decrease trend. We further investigated the expression of insulin-like growth factor 1 (IGF1) and insulin-like growth factor 2 (IGF2) related to placental and fetal growth and development. Our study showed that the expression of IGF1 was significantly decreased both in male and female placentas after PDE. But the expression of IGF2 was significantly increased in female placentas while significantly decreased in male placentas.
Conclusions: Our study shows prenatal dexamethasone exposure exerts sex-specific influence on the placental oxygen and nutrient transport. This might be ascribed to the differential expression of IGF2 after PDE. These findings provide evidence on the dexamethasone-induced toxicity to the placenta and fetal development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154419 | PMC |
http://dx.doi.org/10.21037/atm.2019.12.156 | DOI Listing |
Am J Physiol Heart Circ Physiol
February 2025
Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States.
Autonomic dysfunction is associated with cardiovascular and neurological diseases, including hypertension, heart failure, anxiety, and stress-related disorders. Prior studies demonstrated that late gestation exposure to dexamethasone (DEX) resulted in female-biased increases in stress-responsive mean arterial pressure (MAP) and heart rate (HR), suggesting a role for glucocorticoid-mediated programming of autonomic dysfunction. The present study investigated the influence of sympathetic (SYM) or parasympathetic (PS) blockade on cardiovascular function in male and female rat offspring of mothers injected with DEX in utero [ (GD) -].
View Article and Find Full Text PDFJ Clin Res Pediatr Endocrinol
January 2025
Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
Signs of virilization, such as clitoromegaly, labio-scrotal fusion, and urogenital sinus may be observed in females with 21-hydroxylase deficiency (21-OHD) and other rare virilizing forms of congenital adrenal hyperplasia (CAH). This makes sex determination difficult, and multiple reconstructive surgeries in the postnatal period may be required. As 21-OHD is an autosomal recessive disease, the chance of any child being affected is one in four and so only one in eight will be an affected female.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia.
Prenatal glucocorticoid overexposure alters the developmental program of fetal reproductive organs and results in numerous changes that can lead to various disorders later in life. Moderate fructose consumption during childhood and adolescence may impair the development and function of reproductive organs. The aim of this study was to investigate the effects of prenatal dexamethasone (Dx) exposure in combination with postnatal fructose overconsumption on testicular development and function in fetal and adult male rat offspring.
View Article and Find Full Text PDFCommun Biol
November 2024
Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
Mech Ageing Dev
February 2025
Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, Bochum, Germany. Electronic address:
Developmental defects of the ventral abdominal wall, such as gastroschisis, have been associated with prenatal stress exposure. To investigate this further, dexamethasone (DEX), a synthetic glucocorticoid, was administered to fertilized chicken eggs on day 1 of incubation to simulate stress, and embryonic development was subsequently analyzed through in-situ hybridization, immunohistochemistry, and histological methods. Significant developmental abnormalities were displayed by DEX-treated embryos, including open abdomens, reduced MYOG expression in the abdominal wall, and disrupted muscle fiber formation, as indicated by altered Myosin heavy chain patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!