Effect of residual extractable lignin on acetone-butanol-ethanol production in SHF and SSF processes.

Biotechnol Biofuels

3Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221 USA.

Published: April 2020

Background: Lignin plays an important role in biochemical conversion of biomass to biofuels. A significant amount of lignin is precipitated on the surface of pretreated substrates after organosolv pretreatment. The effect of this residual lignin on enzymatic hydrolysis has been well understood, however, their effect on subsequent ABE fermentation is still unknown.

Results: To determine the effect of residual extractable lignin on acetone-butanol-ethanol (ABE) fermentation in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes, we compared ABE production from ethanol-washed and unwashed substrates. The ethanol organosolv pretreated loblolly pine (OPLP) was used as the substrate. It was observed that butanol production from OPLP-UW (unwashed) and OPLP-W (washed) reached 8.16 and 1.69 g/L, respectively, in SHF. The results showed that ABE production in SHF from OPLP-UW prevents an "acid crash" as compared the OPLP-W. In SSF process, the "acid crash" occurred for both OPLP-W and OPLP-UW. The inhibitory extractable lignin intensified the "acid crash" for OPLP-UW and resulted in less ABE production than OPLP-W. The addition of detoxified prehydrolysates in SSF processes shortened the fermentation time and could potentially prevent the "acid crash".

Conclusions: The results suggested that the residual extractable lignin in high sugar concentration could help ABE production by lowering the metabolic rate and preventing "acid crash" in SHF processes. However, it became unfavorable in SSF due to its inhibition of both enzymatic hydrolysis and ABE fermentation with low initial sugar concentration. It is essential to remove extractable lignin of substrates for ABE production in SSF processes. Also, a higher initial sugar concentration is needed to prevent the "acid crash" in SSF processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149896PMC
http://dx.doi.org/10.1186/s13068-020-01710-2DOI Listing

Publication Analysis

Top Keywords

extractable lignin
20
ssf processes
20
abe production
20
"acid crash"
20
residual extractable
12
abe fermentation
12
sugar concentration
12
lignin
8
lignin acetone-butanol-ethanol
8
production shf
8

Similar Publications

Birch-Bark-Inspired Synergistic Fabrication of High-Performance Cellulosic Materials.

ACS Sustain Resour Manag

December 2024

FSCN Research Center, Organic Chemistry, Mid Sweden University, Holmgatan 10, 851 70 Sundsvall, Sweden.

There is a growing demand for the utilization of sustainable materials, such as cellulose-based alternatives, over fossil-based materials. However, the inherent drawbacks of cellulosic materials, such as extremely low wet strength and resistance to moisture, need significant improvements. Moreover, several of the commercially available wet-strength chemicals and hydrophobic agents for cellulosic material treatment are toxic or fossil-based (e.

View Article and Find Full Text PDF

Lignin-based nano-mimetic enzymes have emerged as a promising approach for wastewater remediation, addressing the limitations of conventional treatment methods. This review article explores the potential of lignin, a renewable biomaterial, in developing these novel enzyme-inspired systems. The introduction highlights the rising pollution levels, stricter environmental regulations, and the need for innovative wastewater treatment technologies.

View Article and Find Full Text PDF

Ultrasound, pulsed electric fields, and high-voltage electrical discharges assisted extraction of cellulose and lignin from walnut shells.

Int J Biol Macromol

December 2024

Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France. Electronic address:

Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.

View Article and Find Full Text PDF

Improving fire retardancy and mechanical properties of polyurethane elastomer by acid hydrotropic lignin.

Int J Biol Macromol

December 2024

USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA. Electronic address:

Improving flame retardancy and mechanical strength of lignin-containing polyurethane is a great challenge. In this study, lignin with favorable reactivity and dispersity was extracted from poplar using acid hydrotrope p-TsOH in EtOH. The extracted acid hydrotrope lignin (AHL) was subsequently functionalized with nitrogen and phosphorus (FHL) and reacted with isocyanate to fabricate a fire-retardant polyurethane (FHL-PU).

View Article and Find Full Text PDF

Extraction of lignin from lignocellulosic biomass (bagasse) as a green corrosion inhibitor and its potential application of composite metal framework organics in the field of metal corrosion protection.

Int J Biol Macromol

December 2024

Guangxi Colleges and Universities Key Laboratory of surface and interface electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guilin University of Technology, Guilin 541004, China. Electronic address:

With increasing awareness of environmental protection, additional attention has been given to environmentally friendly metal anticorrosion research. In this paper, the green organic corrosion inhibitor sodium lignosulfonate (SLS) was extracted from bagasse waste, and a Ce-MOF@SLS smart anticorrosive film containing the inhibitor was prepared on the surface of an aluminum alloy by in situ electrodeposition. The material was characterized by SEM, EDS, FT-IR, XRD and XPS, and its corrosion resistance was tested with EIS and neutral salt spray tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!