Sesamin Promotes Neurite Outgrowth under Insufficient Nerve Growth Factor Condition in PC12 Cells through ERK1/2 Pathway and SIRT1 Modulation.

Evid Based Complement Alternat Med

Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.

Published: March 2020

The promotion of neurogenesis can be a promising strategy to improve and restore neuronal function in neurodegenerative diseases. Nerve growth factor (NGF) plays a key role in neurite outgrowth and synaptic formation during brain repair stage. Nowadays, there are several studies on the developing methods to enhance the endogenous NGF activity for treatment and restore the neuronal function. In this study, the potentiating effect of sesamin, a major lignan in sesame seeds () and oil, on NGF-induced neurogenesis and its involved mechanisms were firstly reported. Sesamin effectively enhanced the PC12 neuron-like cell differentiation and neurite length under insufficient conditions of NGF. The neuronal markers including synaptophysin and growth-associated protein-43 along with the synaptic connections were significantly increased in combination treatment between sesamin and NGF. Moreover, sesamin also increased the level of phospho-ERK1/2 and SIRT1 protein, an important regulatory protein of the neurogenesis process. The neurogenesis was blocked by the specific SIRT1 inhibitor, JGB1741, suggesting that the neuritogenic effect of sesamin was associated with SIRT1 protein modulation. Taken together, the potentiating effect of sesamin on NGF-induced neurogenesis in this finding could be used for alternative treatment in neurodegenerative diseases, including Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139881PMC
http://dx.doi.org/10.1155/2020/9145458DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
8
nerve growth
8
growth factor
8
restore neuronal
8
neuronal function
8
neurodegenerative diseases
8
potentiating sesamin
8
ngf-induced neurogenesis
8
sirt1 protein
8
sesamin
7

Similar Publications

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Systematic Evaluation of Extracellular Coating Matrix on the Differentiation of Human-Induced Pluripotent Stem Cells to Cortical Neurons.

Int J Mol Sci

December 2024

Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.

View Article and Find Full Text PDF

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Purpose: To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED).

Materials And Methods: Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure.

View Article and Find Full Text PDF

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!