While foot orthoses are commonly used in running, little is known regarding biomechanical risk potentials during uphill running. This study investigated the effects of arch-support orthoses on kinetic and kinematic variables when running at different inclinations. Sixteen male participants ran at different inclinations (0°, 3° and 6°) when wearing arch-support and flat orthoses on an instrumented treadmill. Arch-support orthoses induced longer contact time, larger initial ankle dorsiflexion, maximum ankle eversion, and knee sagittal range of motion (RoM) ( < 0.05). As incline slopes increased, vertical impact peak and loading rate, stride length, and ankle coronal RoM decreased, but contact time, stride frequency, initial ankle dorsiflexion and inversion, maximum dorsiflexion, initial knee flexion, and ankle sagittal RoM increased ( < 0.05). Furthermore, knee sagittal RoM was lowest when running at an inclination of 3°. The interaction effect indicated that in arch-support condition, participants running at 6° induced higher maximum ankle eversion than running at 0° ( < 0.05), while no differences were found in flat orthosis condition. These findings suggest that the use of arch-support orthoses would influence running biomechanics that is related to injury risks. Running at higher inclination led to more alterations to biomechanical variables than at lower inclination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02640414.2020.1754704 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!