Two-dimensional metal sulfides and their hybrids are emerging as promising candidates in various areas. Yet, it remains challenging to synthesize high-quality 2D metal sulfides and their hybrids, especially iso-component hybrids, in a simple and controllable way. In this work, a low-temperature selective solid-liquid sulfidation growth method has been developed for the synthesis of CuS nanoflakes and their hybrids. CuS nanoflakes of about 20 nm thickness and co-component hybrids CuO /CuS with variable composition ratios derived from different sulfidation time are obtained after the residual sulfur removal. Besides, benefiting from the mild low-temperature sulfidation conditions, selective sulfidation is realized between Cu and Fe to yield iso-component FeO /CuS 2D nanoflakes of about 10-20 nm thickness, whose composition ratio is readily tunable by controlling the precursor. The as-synthesized FeO /CuS nanoflakes demonstrate superior lithium storage performance (i. e., 707 mAh g at 500 mA g and 627 mAh g at 1000 mA g after 450 cycles) when tested as anode materials in LIBs owing to the advantages of the ultrathin 2D nanostructure as well as the lithiation volumetric strain self-reconstruction effect of the co-existing two phases during charging/discharging processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202000304DOI Listing

Publication Analysis

Top Keywords

selective solid-liquid
8
sulfidation growth
8
metal sulfides
8
sulfides hybrids
8
cus nanoflakes
8
feo /cus
8
/cus nanoflakes
8
sulfidation
5
nanoflakes
5
hybrids
5

Similar Publications

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl and AlCl were tested on freshwater and two marine algae, and .

View Article and Find Full Text PDF

Grape pomace, the solid residue from winemaking, is a rich source of polyphenolic compounds with significant antioxidant properties. However, the efficient extraction of these valuable compounds remains a challenge. This study focuses on optimizing the conditions for the enzyme-assisted extraction of polyphenolic compounds from red grape pomace using cellulase, hemicellulase, and pectinase.

View Article and Find Full Text PDF

Copper catastrophic oxidation: Theory and mechanisms.

J Chem Phys

December 2024

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Pr., 119334 Moscow, Russian Federation.

Copper and its alloys with transition metals (as good conductors of electricity and heat) are extensively used in electrical industry, electronics, and cooling systems and can be the subject of surface degradation by oxidation. In certain circumstances, surface degradation of copper occurs catastrophically. Predicting catastrophic oxidation kinetics and developing protective technology require understanding the mass transfer mechanisms in the solid/liquid/gas composite scale formed on the copper surface during catastrophic degradation.

View Article and Find Full Text PDF

Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy.

Acc Chem Res

January 2025

Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!