Multivariate spatial count data are often segmented by unobserved space-varying factors that vary across space. In this setting, regression models that assume space-constant covariate effects could be too restrictive. Motivated by the analysis of cause-specific mortality data, we propose to estimate space-varying effects by exploiting a multivariate hidden Markov field. It models the data by a battery of Poisson regressions with spatially correlated regression coefficients, which are driven by an unobserved spatial multinomial process. It parsimoniously describes multivariate count data by means of a finite number of latent classes. Parameter estimation is carried out by composite likelihood methods, that we specifically develop for the proposed model. In a case study of cause-specific mortality data in Italy, the model was capable to capture the spatial variation of gender differences and age effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bimj.201900229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!