Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A growing awareness of a subsurface fossil record of mostly hyphal fungi organisms stretching back through the Phanerozoic to ≈400 megaannum (Ma) and possibly earlier, provides an alternative view on hyphal development. Parallel with the emergence of hyphal fungi during Ordovician-Devonian times when plants colonized the land, which is the traditional notion of hyphal evolution, hyphae-based fungi existed in the deep biosphere. New insights suggest that the fundamental functions of hyphae may have evolved in response to an ancient subsurface endolithic life style and might have been in place before the colonization of land. To address the gaps in the current understanding of hyphal evolution a strategy based on research prospects involving investigations of uncharted geological material, new diagnostics, and comparisons to live species is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.201900183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!