Hypogenesis (hCC) and dysgenesis (dCC) of the corpus callosum (CC) are characterized by its smaller size or absence. The outcomes of these patients vary considerably and are unrelated to the size of the CC abnormality. The aim of the current study was to characterize the sulcal pattern in children with hCC and dCC and to explore its relation to clinical outcome. We used quantitative sulcal pattern analysis that measures deviation (similarity index, SI) of the composite or individual sulcal features (position, depth, area, and graph topology) compared to the control group. We calculated SI for each hemisphere and lobe in 11 children with CC disorder (hCC = 4, dCC = 7) and 15 controls. hCC and dCC had smaller hemispheric SI compared to controls. dCC subjects had smaller regional SI in the frontal and occipital lobes, which were driven by a smaller SI in a position or a graph topology. The significantly decreased SI gradient was found across groups only in the sulcal graph topology of the temporal lobes (controls > hCC > dCC) and was related to clinical outcome. Our results suggest that careful examination of sulcal pattern in hCC and dCC patients could be a useful biomarker of outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391268 | PMC |
http://dx.doi.org/10.1093/cercor/bhaa067 | DOI Listing |
Soft Matter
January 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.
View Article and Find Full Text PDFIn this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning ( )? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise -cortical morphometry (volume, surface area, thickness, curvature and sulcal depth) associations using data from 3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth Cohort 1936 (LBC1936), with the meta-analytic = 38,379 (age range = 44 to 84 years old). These morphometry associations vary in magnitude and direction across the cortex (|β| range = -0.12 to 0.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Department of Clinical Cognition Science, Clinic of Neurology at the RWTH Aachen University Faculty of Medicine, ZBMT, Aachen, Germany.
Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
The functional significance of the morphological and genetic changes that occurred in the brain during evolution is not fully understood. Here we show the relationships between evolutionary changes of the brain and glymphatic circulation. We establish a mathematical model to simulate glymphatic circulation in the cerebral hemispheres, and our results show that cortical neurons accumulate in areas of the cerebral hemispheres where glymphatic circulation is highly efficient.
View Article and Find Full Text PDFCortex
December 2024
Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA. Electronic address:
Background: Emotion-related impulsivity (ERI) describes the trait-like tendency toward poor self-control when experiencing strong emotions. ERI has been shown to be elevated across psychiatric disorders and predictive of the onset and worsening of psychiatric syndromes. Recent work has correlated ERI scores with the region-level neuroanatomical properties of the orbitofrontal cortex (OFC), but not posteromedial cortex (PMC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!