Nitrogen availability is one of the key factors affecting the dynamics of non-diazotrophic cyanobacterial blooms in eutrophic lakes. While previous studies mainly focused on the promoting effect of nitrogen on the growth of cyanobacteria, this study aimed to investigate the role of nitrogen availability in the downward transport of biomass and its effects on the dynamics of Microcystis blooms. We performed field enclosure experiments which demonstrated that nitrogen availability negatively affects the downward transport of biomass. With a nitrogen loading of 0.02 g N m d, the Microcystis biomass in the water column decreased by 56.2% over a 4-day period. During the same period of time, the average sinking ratio was 0.23 d; moreover, the termination of biomass growth was detected. At the notably higher nitrogen loading of 0.5 g N md, the downward transport of biomass could still compensate for the biomass growth, although the average sinking ratio was lower at 0.16 d. Additional laboratory culture experiments demonstrated that the increase in the downward transport of Microcystis occurred in parallel to an increase in the carbohydrate content and a decrease in gas vesicle content. Further proteomic analysis indicated that the carbohydrate accumulation induced by nitrogen deficiency was a result of the slowing down of catabolic consumption, especially the downregulation of glycolysis. Thus, our study suggests that increased intracellular carbohydrate accumulation at low nitrogen availability causes a higher sinking ratio of Microcystis, indicating that nitrogen limits the duration of Microcystis blooms; thus, decreased nitrogen availability may lead to increased sinking of biomass out of the water column, accelerating the dissipation of Microcystis blooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2020.101796 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.
Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.
View Article and Find Full Text PDFJ Nat Resour Agric Ecosyst
January 2024
Office of Research and Development, USA Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
Although significant governmental investment has been provided to implement agricultural conservation practices (ACPs) for water quality improvement, eutrophication and hypoxia persist in coastal and fresh waters. A better understanding of the comparative effectiveness of ACPs is needed to improve environmental outcomes with the funding available. The objectives of this overview article are to (1) compare the performance and cost effectiveness among all the ACPs reviewed in both the first and second editions of the Special Collection and (2) present critical perspectives for researchers, policymakers, and funding entities seeking to improve water quality.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
Background: The link between waist-to-height ratio (WHtR) and osteoporosis (OP) remains a contentious issue in the field of medical research. Currently, the available evidence on this association is deemed insufficient. This topic has garnered significant attention and is a focal point of ongoing investigations.
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Forestry, Gansu Agricultural University, Lanzhou, China.
Alpine wet meadows are known as NO sinks due to nitrogen (N) limitation. However, phosphate addition and N deposition can modulate this limitation, and little is known about their combinative effects on NO emission from the Qinghai-Tibet Plateau in wet meadows. This study used natural wet meadow as the control treatment (CK) and conducted experiments with N (CONH addition, N15), P (NaHPO addition, P15), and their combinations (CONH and NaHPO addition, N15P15) to investigate how N and P supplementation affected soil NO emissions in wet meadow of QTP.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan Province China.
Unlabelled: The rapid growth of Bamboo made the uptake and allocation of nitrogen much important. Nitrate is the main form that plant utilized nitrogen by nitrate transporters (NRTs) as well as ammonium salt. In this study, we identified 155 genes which mapped to 32 chromosomes out of 35 chromosomes in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!