Genome of extreme halophyte Puccinellia tenuiflora.

BMC Genomics

Key laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.

Published: April 2020

Background: Puccinellia tenuiflora, a forage grass, is considered a model halophyte given its strong tolerance for multiple stress conditions and its close genetic relationship with cereals. This halophyte has enormous values for improving our understanding of salinity tolerance mechanisms. The genetic information of P. tenuiflora also is a potential resource that can be used for improving the salinity tolerance of cereals.

Results: Here, we sequenced and assembled the P. tenuiflora genome (2n = 14) through the combined strategy of Illumina, PacBio, and 10× genomic technique. We generated 43.2× PacBio long reads, 123.87× 10× genomic reads, and 312.6× Illumina reads. Finally, we assembled 2638 scaffolds with a total size of 1.107 Gb, contig N50 of 117 kb, and scaffold N50 of 950 kb. We predicted 39,725 protein-coding genes, and identified 692 tRNAs, 68 rRNAs, 702 snRNAs, 1376 microRNAs, and 691 Mb transposable elements.

Conclusions: We deposited the genome sequence in NCBI and the Genome Warehouse in National Genomics Data Center. Our work may improve current understanding of plant salinity tolerance, and provides extensive genetic resources necessary for improving the salinity and drought tolerance of cereals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168874PMC
http://dx.doi.org/10.1186/s12864-020-6727-5DOI Listing

Publication Analysis

Top Keywords

salinity tolerance
12
puccinellia tenuiflora
8
improving salinity
8
tolerance
5
genome
4
genome extreme
4
extreme halophyte
4
halophyte puccinellia
4
tenuiflora
4
tenuiflora background
4

Similar Publications

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.

View Article and Find Full Text PDF

Purpose: This study explored how exogenous silicon (Si) affects growth and salt resistance in maize.

Methods: The maize was cultivated in sand-filled pots, incorporating varied silicon and salt stress (NaCl) treatments. Silicon was applied at 0, 2, 4, 6, and 8 mM, and salt stress was induced using 0, 60 and120 mM concentrations.

View Article and Find Full Text PDF

The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.

View Article and Find Full Text PDF

Salinity is one of the predominant abiotic stressors that reduce plant growth, yield, and productivity. Ameliorating salt tolerance through nanotechnology is an efficient and reliable methodology for enhancing agricultural crops yield and quality. Nanoparticles enhance plant tolerance to salinity stress by facilitating reactive oxygen species detoxification and by reducing the ionic and osmotic stress effects on plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!