Aquatic animals often display physiological adjustments to improve their biological performance and hydrosaline balance in saline environments. In addition to energetic costs associated with osmoregulation, oxidative stress, and the activation of the antioxidant system are common cellular responses to salt stress in many species, but the knowledge of osmoregulation-linked oxidative homeostasis in amphibians is scarce. Here we studied the biochemical responses and oxidative responses of Xenopus laevis females exposed for 40 days to two contrasting salinities: hypo-osmotic (150 mOsm·kg ·H O NaCl, HYPO group) and hyper-osmotic environments (340 mOsm·kg ·H O NaCl, HYPER group). We found an increase of plasma osmolality and plasma urea concentration in the animals incubated in the HYPER treatment. Increases in electrolyte concentration were paralleled with an increase of both citrate synthase and cytochrome c oxidase activities in liver and heart. Interestingly, HYPO group had higher catabolic activity of the skin and liver total antioxidant capacity (TAC), compared with animals from the HYPER group. Moreover, there was an inverse relationship between liver TAC and plasma osmolality; and with the metabolic enzymes from liver. These findings suggest that salinity induces changes in urea metabolism and specific activity of metabolic enzymes, which appears to be tissue-dependent in X. laevis. Contrary to our expectations, we also found a moderate change in the oxidative status as revealed by the increase in TAC activity in the animals acclimated to low salinity medium, but constancy in the lipid peroxidation of membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jez.2360 | DOI Listing |
Plant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFWest Afr J Med
September 2024
Urology Department, Dorset County Hospital, Dorchester, UK.
Introduction: Prostate cancer (PCa) is the commonest urologic cancer worldwide and the leading cause of male cancer deaths in Nigeria. In Nigeria, orchidectomy remains the primary androgen deprivation therapy. Dihydrotestosterone (DHT) is the active prostatic androgen, but its relationship with PCa severity has not been extensively studied in Africa.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Pulmonary and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Introduction: This study aimed to analyze the levels of MMP-9 and TIMP-1 as biomarkers for identifying lung anatomical and functional abnormalities in coronavirus disease 2019 (COVID-19).
Methodology: Adult COVID-19 patients hospitalized between October and December 2021 were included in the study. MMP-9 and TIMP-1 levels were measured from the blood.
J Infect Dev Ctries
December 2024
Department of Gastroenterology, Pamukkale University School of Medicine, Denizli,Turkey.
Introduction: This study investigated the role of fibroblast growth factor 23 (FGF23)/Klotho in the mortality of patients hospitalized with coronavirus disease 2019 (COVID-19), excluding those with chronic kidney disease (CKD).
Methodology: A prospective cross-sectional study was conducted from April 2021 to May 2022. Patients who tested positive for COVID-19 via polymerase chain reaction and were hospitalized, were classified into two groups (survivors and non-survivors) at the end of their hospital follow-up.
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!