Rooting depth as a key woody functional trait in savannas.

New Phytol

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.

Published: September 2020

Dimensions of tree root systems in savannas are poorly understood, despite being essential in resource acquisition and post-disturbance recovery. We studied tree rooting patterns in Southern African savannas to ask: how tree rooting strategies affected species responses to severe drought; and how potential rooting depths varied across gradients in soil texture and rainfall. First, detailed excavations of eight species in Kruger National Park suggest that the ratio of deep to shallow taproot diameters provides a reasonable proxy for potential rooting depth, facilitating extensive interspecific comparison. Detailed excavations also suggest that allocation to deep roots traded off with shallow lateral root investment, and that drought-sensitive species rooted more shallowly than drought-resistant ones. More broadly across 57 species in Southern Africa, potential rooting depths were phylogenetically constrained, with investment to deep roots evident among miombo Detarioids, consistent with results suggesting they green up before onset of seasonal rains. Soil substrate explained variation, with deeper roots on sandy, nutrient-poor soils relative to clayey, nutrient-rich ones. Although potential rooting depth decreased with increasing wet season length, mean annual rainfall had no systematic effect on rooting depth. Overall, our results suggest that rooting depth systematically structures the ecology of savanna trees. Further work examining other anatomical and physiological root traits should be a priority for understanding savanna responses to changing climate and disturbances.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16613DOI Listing

Publication Analysis

Top Keywords

rooting depth
20
potential rooting
16
rooting
9
tree rooting
8
rooting depths
8
detailed excavations
8
deep roots
8
depth key
4
key woody
4
woody functional
4

Similar Publications

The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.

View Article and Find Full Text PDF

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Species.

Int J Mol Sci

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.

Late embryogenesis abundant (LEA) proteins are a class of proteins associated with osmotic regulation and plant tolerance to abiotic stress. However, studies on the gene family in the alpine cold-tolerant herb are still limited, and the phylogenetic evolution and biological functions of its family members remain unclear. In this study, we conducted genome-wide identification, phylogenetic evolution, and abiotic stress response analyses of family genes in species, alpine cold-tolerant medicinal herbs in the Qinghai-Tibet Plateau and adjacent regions.

View Article and Find Full Text PDF

Objective: To study the durability of the anti-demineralization effects of fluoride varnish after being applied to dental root surfaces.

Methods: Coronal and radicular dentin samples were prepared from extracted human teeth. Duraphat (DP) was applied to the dentine surfaces to form a protective film.

View Article and Find Full Text PDF

Introduction And Objective: Rumex sanguineus, a traditional medicinal plant of the Polygonaceae family, is gaining popularity as an edible resource. However, despite its historical and nutritional significance, its chemical composition remains poorly understood. To deepen the understanding of the of Rumex sanguineus composition, an in-depth analysis using non-targeted, mass spectrometry-based metabolomics was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!