[Interaction between PSF and cytokeratin 18 mediates PSF relocation to cell membrane and maintains chemosensitivity of myeloid leukemia].

Beijing Da Xue Xue Bao Yi Xue Ban

National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.

Published: April 2020

Objective: To identify the chaperone of polypyrimidine tractor-binding protein-associated splicing factor (PSF) in myeloid leukemia cells, and to explore the mechanism and redistributive pattern to cell surface of PSF in chemo-sensitive HL60 cells and resistant HL60/DOX cells.

Methods: The eukaryotic expression vector of PSF was transfected with liposomes transiently, then flow cytometry was used to detect the expression level of PSF on the cell surface 24 h, 48 h and 72 h after vector transfections. We constructed a chimeric expression vector, streptavidin binding peptide (SBP)-PSF, meanwhile this vector was transfected and made SBP-PSF fusion protein overexpress. In addition, we used streptavidin magnetic beads to precipitate the cellular chaperonin of PSF and then identified its chaperonin by mass spectrometry (MS). Lentiviral vectors containing cytokeratin18 (K18) interference sequences were transfected into 293T cells to prepare lentivirus. HL60 and HL60/DOX cells were infected with lentivirus to obtain stable interfering K18 cell lines. Next, flow cytometry was used to test the membrane relocation level of PSF. Together, these methods confirmed the similar or different mechanisms of the PSF redistributing to membrane synergistically mediated by K18 in HL60 and HL60/DOX cells.

Results: The expression of membrane relocated PSF was detected every day for three days (at the end of 24 h, 48 h and 72 h) after transient overexpression. The expressing rate of PSF on the cell surface was 22.4%±3.5%, 37.9%±6.0%, 58.3%±8.8%, respectively in sensitive HL60 cells, while that was 4.7%±0.5%, 3.9%±0.6%, 2.9%±0.6% , respectively in resistant HL60/DOX cells. The difference of expressing rate on each day was significant, P<0.01. We identified K18 detected by co-immunoprecipitation and mass spectrum assay which was the cellular chaperone of PSF. We found that K18 knockdown decreased the PSF expression level which redistributed on cell surface from 48.9%±5.4% to 6.2%±1.0% in sensitive HL60 cells, and from 9.11%±1.2% to 2.21%±0.51% in resistant HL60/DOX cells, respectively.

Conclusion: K18 is the intracellular chaperonin of PSF. The interaction of PSF and K18 mediates its redistribution to cell membrane in sensitive cells. While in resistant cells, PSF failed to relocate at the cell surface and accumulated in cells, which mediated resistance to chemotherapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433459PMC
http://dx.doi.org/10.19723/j.issn.1671-167X.2020.02.004DOI Listing

Publication Analysis

Top Keywords

cell surface
12
psf
10
hl60 cells
8
resistant hl60/dox
8
expression vector
8
flow cytometry
8
level psf
8
psf cell
8
hl60 hl60/dox
8
hl60/dox cells
8

Similar Publications

Objective: Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood.

View Article and Find Full Text PDF

Topology optimization is a powerful technique that utilizes the distribution of material properties along with surface topology as parameters to expand a specified performance. While primarily used as a foundational step in regenerative design for structural mechanics, the general TO framework is also applicable to many of the complex issues in electromagnetics such as frequency agile mode converters. This is considered a difficult parameter to optimize since RF components operate on resonance.

View Article and Find Full Text PDF

GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding.

Nat Commun

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.

The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.

View Article and Find Full Text PDF

Endothelial Damage in JAK2V617F Myeloproliferative Neoplasms with Splanchnic Vein Thrombosis.

Thromb Haemost

January 2025

Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.

Background:  V617F-mutated myeloproliferative neoplasms (MPN) exhibit abnormal proliferation of bone marrow progenitors and increased risk of thrombosis, specifically in splanchnic veins (SVT). The contribution of the endothelium to the development of the prothrombotic phenotype was explored.

Material And Methods:  Plasma and serum samples from V617F MPN patients with (n=26) or without (n=7) thrombotic debut and different treatments, were obtained (n=33).

View Article and Find Full Text PDF

Bougainvillea glabra-mediated synthesis of Zr₃O and chitosan-coated zirconium oxide nanoparticles: Multifunctional antibacterial and anticancer agents with enhanced biocompatibility.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India. Electronic address:

The effectiveness and safety of nanomaterials (NMs) are essential for their use in healthcare. This study focuses on creating NPs with multifunctional antibacterial and anticancer properties to combat bacterial infections and cancer disease more effectively than traditional antibiotics. This study investigates the synthesis of ZrO and chitosan (ch) coated zirconium oxide nanoparticles (chZrO NPs) using Bougainvillea glabra (B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!