Minimally invasive procedures rely on image guidance for navigation at the operation site to avoid large surgical incisions. X-ray images are often used for guidance, but important structures may be not well visible. These structures can be overlaid from pre-operative 3-D images and accurate alignment can be established using 2-D/3-D registration. Registration based on the point-to-plane correspondence model was recently proposed and shown to achieve state-of-the-art performance. However, registration may still fail in challenging cases due to a large portion of outliers. In this paper, we describe a learning-based correspondence weighting scheme to improve the registration performance. By learning an attention model, inlier correspondences get higher attention in the motion estimation while the outlier correspondences are suppressed. Instead of using per-correspondence labels, our objective function allows to train the model directly by minimizing the registration error. We demonstrate a highly increased robustness, e.g. increasing the success rate from 84.9% to 97.0% for spine registration. In contrast to previously proposed learning-based methods, we also achieve a high accuracy of around 0.5mm mean re-projection distance. In addition, our method requires a relatively small amount of training data, is able to learn from simulated data, and generalizes to images with additional structures which are not present during training. Furthermore, a single model can be trained for both, different views and different anatomical structures.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2020.2988410DOI Listing

Publication Analysis

Top Keywords

learning attention
8
attention model
8
2-d/3-d registration
8
registration
7
model
5
model robust
4
robust 2-d/3-d
4
registration point-to-plane
4
point-to-plane correspondences
4
correspondences minimally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!