Membranes with a wave pattern on the membrane surface are now proposed for the first time to alleviate microalgal fouling and increase the membrane flux. The membrane morphology was observed via scanning electron microscope, and the clean water permeance, microalgae harvesting efficiency and membrane flux in a real broth were determined to investigate the effects of polysulfone (PSF) and polyethylene glycol (PEG) concentrations in the membrane casting solution. Furthermore, the influence of the height of the patterned waves and the inter-pattern distance on the fouling prevention were investigated. Higher PSF and PEG concentrations resulted in better pronounced patterns. Patterned membrane showed higher fluxes and critical pressures than the corresponding flat membranes. Larger patterns gave higher membrane fluxes and less fouling. Computational fluid dynamics simulation showed a higher velocity and shear on the pattern apexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.123367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!