Granular sludge is a preferable inoculum for the biochemical methane potential assay for two complex substrates.

Bioresour Technol

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY; Center for Applied Geosciences, University of Tübingen, Tübingen, Germany; Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY.

Published: August 2020

The biochemical methane potential (BMP) assay is a standard method for characterizing biomethane potential and anaerobic biodegradability organic waste streams. Therefore, the BMP protocol must be standardized to reliably compare these parameters for various substrates. Here, the effect of inoculum selection on biomethane potential was investigated through BMP tests using two different substrates and inocula obtained from four different anaerobic digesters. It was found that inocula in the form of granular sludge yielded overall higher biomethane potential and generally had faster kinetics than suspended biomass. Furthermore, acclimation of inocula to substrate appeared to have little effect on degradation rates, and co-inoculation (with both suspended and granular biomass) did not perform better than single inoculation (e.g., with suspended sludge alone). These results emphasize the role of granular sludge as an preferable inoculum for BMP assay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123359DOI Listing

Publication Analysis

Top Keywords

granular sludge
12
biomethane potential
12
sludge preferable
8
preferable inoculum
8
biochemical methane
8
methane potential
8
bmp assay
8
potential
5
granular
4
inoculum biochemical
4

Similar Publications

Aerobic granules extraction inhibits overgrowth of filamentous bacteria during start-up of aerobic granular sludge.

Bioresour Technol

January 2025

School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.

In aerobic granular sludge (AGS) system, N-acyl homoserine lactones (AHLs) can effectively regulate the community structure and control filamentous bulking. It would be economically feasible to make mature granules into AHLs-rich AGS extract (AE) to replace synthesized AHLs. In this study, two SBRs were run in a fully aerobic environment and a short cycle (4 h) to culture AGS: R1 with AE adding; R2 served as control.

View Article and Find Full Text PDF

Up-flow anaerobic sludge blanket bioreactor for the production of carboxylates: effect of inocula on process performance and microbial communities.

Bioresour Bioprocess

January 2025

Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.

This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.

View Article and Find Full Text PDF

Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is usually considered to be a biofilm system consisting of granules only, although practical experience suggests that flocs and granules of various sizes co-exist. This study thus focused on understanding the contribution of flocs and granules of various sizes to nitrification in a full-scale AGS-based wastewater treatment plant (WWTP) operated as a sequencing batch reactor (SBR). The size distribution in terms of total suspended solids (TSS) and the distribution of the nitrifying communities and activities were monitored over 14 months.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!