Alkaline hydrolysis pathway of 2,4-dinitroanisole verified by O tracer experiment.

J Hazard Mater

Department of Earth Sciences, University of Delaware, Newark, DE, 19716, USA. Electronic address:

Published: September 2020

The environmental fate of insensitive munitions compounds, such as 2,4-dinitroanisole (DNAN), has drawn increasing attention because of their growing use in military activities. One of the main attenuation mechanisms of DNAN degradation in aqueous environments is alkaline hydrolysis. We investigated the pathway for alkaline hydrolysis of DNAN at pH 12 by a combined approach of experiment and theory. An experiment using O-labeled water was performed to verify the reaction pathway. Calculated free energies for two putative reaction pathways by density-functional theory optimized at the SMD(Pauling)/M06-2X/6-311++G(2d,2p) level including explicit solvation of DNAN by 10 HO molecules and one OH ion gave a prediction in agreement with the experimental result. The verified reaction pathway for alkaline hydrolysis of DNAN is a S2Ar nucleophilic aromatic substitution with a methoxy leaving group (OCH) at the C1 site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122627DOI Listing

Publication Analysis

Top Keywords

alkaline hydrolysis
16
pathway alkaline
8
hydrolysis dnan
8
reaction pathway
8
dnan
5
alkaline
4
pathway
4
hydrolysis pathway
4
pathway 24-dinitroanisole
4
24-dinitroanisole verified
4

Similar Publications

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Lectin-Mediated Labeling of Alkaline Phosphatase for Enzymatic Silver Deposition-Based Electrochemical Detection of Glycoprotein Tumor Markers.

Anal Chem

January 2025

Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.

The screening of glycoprotein markers has become an integral part of the in vitro diagnosis of malignant tumors. Herein, an electrochemical method based on alkaline phosphatase (ALP)-mediated enzymatic silver deposition is reported for the highly sensitive detection of glycoprotein tumor markers, in which ALP enzymes are decorated to the glycan moieties of targets via the lectin-carbohydrate interactions. As glycoproteins are conjugated with multiple glycan chains, lectin-mediated labeling can result in the decoration of each target with multiple ALP enzymes.

View Article and Find Full Text PDF

Identification of Dufulin photolysis and hydrolysis products in water using a C stable isotope assisted HPLC-HRMS strategy.

Water Res

January 2025

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Dufulin is an efficient antiviral agent for plants, however, data on its environmental fate, particularly concerning its transformation products (TPs), remain scarce. The TPs formed during abiotic degradation may pose significant environmental risks due to potential toxicity. Therefore, this study systematically investigated the hydrolysis and photolysis kinetics of Dufulin in aqueous solutions across various pH conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!