Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanisms and signalling pathways of the neuroprotective effect of hypercapnia and its combination with hypoxia are poorly understood. The study aims to test the hypothesis about the potentiating effect of hypercapnia on hypoxia adaptation systems directly related to hypoxia-induced factor 1α (HIF-1α). In this study we assessed HIF-1α content in hippocampal extracts and astrocytes obtained from Wistar male rats exposed to different respiratory conditions (7- or 15-fold of hypoxia and/or hypercapnia). In addition, HIF-1α content in astrocytes was assessed in in vitro model of chemical hypoxia as well as in the cerebral cortex after photothrombotic damage of this brain region. This study indicates increased levels of HIF1α in hippocampal extracts, astrocytes, and in cells of the near-stroke region of the cerebral cortex in rats exposed to hypoxia and hypercapnic hypoxia, but not hypercapnia alone. In in vitro study, hypercapnia facilitates the effects of acute chemical hypoxia observed in astrocytes. Thus, hypercapnia does not increase the level of transcription factor HIF-1α. However, the combined effects of hypercapnia and hypoxia in in vitro simulations of acute chemical hypoxia potentiate the accumulation of HIF-1α.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2020.103442 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!