Wheat (T. aestivum L.) is the second most important staple food crop consumed in the form of various end-use products across the world. However, it contains lower concentrations of Fe and Zn leading to micronutrient deficiency in human beings where wheat is the sole diet. Therefore, increasing grain Fe/Zn content in wheat has become priority in wheat breeding programmes across the world. Understanding the molecular mechanism of Fe/Zn transport and accumulation in grains is required to expedite the breeding process. For this purpose, whole seedling transcriptome analysis was conducted in four wheat genotypes (CRP 1660, Sonora 64, Vinata, : high, and DBW17: low) differing in grain Fe/Zn content under controlled and Fe/Zn deficient conditions. Twenty eight key transcripts involved in phytosiderophore biosynthesis, Fe/Zn uptake and transport were identified. Expression analysis of 12 of the transcripts using qPCR was conducted in seedling stage and flag leaf which exhibited greater differential accumulation in CRP 1660 followed by Vinata, Sonora 64 and DBW 17 in both flag leaf and seedling. However, there was significantly higher differential accumulation of the transcripts in flag leaf as compared to seedling. In CRP 1660, transcripts pertaining to phytosiderophore biosynthesis like DMAS1-B, NRAMP2 and NAAT2-D showed greater accumulation. Additionally, corresponding miRNAs were also identified for these 28 transcripts. The findings will help in better understanding of molecular basis of Fe/Zn transport and accumulation in grain and subsequent utilization in breeding to improve Fe/Zn content in wheat grain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2020.03.015DOI Listing

Publication Analysis

Top Keywords

transport accumulation
12
fe/zn content
12
crp 1660
12
flag leaf
12
wheat aestivum
8
grain fe/zn
8
content wheat
8
understanding molecular
8
fe/zn transport
8
phytosiderophore biosynthesis
8

Similar Publications

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

A Drosophila Model of Mucopolysaccharidosis IIIB.

Genetics

December 2024

Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.

Mucopolysaccharidosis type IIIB (MPS IIIB) is a rare lysosomal storage disorder caused by defects in alpha-N-acetylglucosaminidase (NAGLU) and characterized by severe effects in the central nervous system. Mutations in NAGLU cause accumulation of partially degraded heparan sulfate in lysosomes. The consequences of these mutations on whole genome gene expression and their causal relationships to neural degeneration remain unknown.

View Article and Find Full Text PDF

Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms.

Bioessays

December 2024

Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance.

View Article and Find Full Text PDF

Background: The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045).

View Article and Find Full Text PDF

Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!